[1] Bergquist A M, Carpenter S R, Latino J C. Shift in phytoplankton size structure and community composition during grazing by contrasting zooplankton assemblages[J]. Limnology &Oceanography, 1985, 30: 1037-1045.
[2] Kerfoot W C, Levitan C, DeMott W. Daphnia-phytoplankton interactions: density-dependent shifts in resource quality[J]. Ecology, 1988: 1806-1825.
[3] Ghadouani A, Pinel-Alloul B, Prepas E E. Effects of experimentally induced cyanobacterial blooms on crustacean zooplankton communities[J]. Freshwater biology, 2003, 48: 363-381.
[4] Moss B, Stansfield J, Irvine K, Perrow M, Phillips G. Progressive restoration of a shallow lake: A 12-year experiment in isolation, sediment removal and biomanipulation[J]. Journal of Applied Ecology, 1996, 33: 71-86.
[5] Meijer M L, de Boois I, Scheffer M, Portielje R, Hosper H. Biomanipulation in shallow lakes in the Netherlands: an evaluation of 18 case studies[J]. Hydrobiologia, 2003, 408-409: 13-30.
[6] Post J R, McQueen D J. The impact of planktivorous flsh on the structure of a plankton community[J]. Freshwater biology, 1987, 17: 79-89.
[7] Meerhoff M, Clemente J M, De Mello F T, Iglesias C, Pedersen A R, Jeppesen E. Can warm climate-related structure of littoral predator assemblies weaken the clear water state in shallow lakes[J]. Global Change Biology, 2007, 13: 1888-1897.
[8] Brucet S, Boix D, Nathansen L W, Quintana X D, Jensen E, Balayla D, Meerhoff M, Jeppesen E. Effects of temperature, salinity and fish in structuring the macroinvertebrate community in shallow lakes: Implications for effects of climate change[J]. PLOS one, 2012, 7: 1-11.
[9] Havens K, Elia A, Taticchi M, Fulton R. Zooplankton-phytoplankton relationships in shallow subtropical versus temperate lakes Apopka (Florida, USA) and Trasimeno(Umbria, Italy)[J]. Hydrobiologia, 2009, 628: 165-175.
[10] Jeppesen E, Kronvang B, Meerhoff M, Søndergaard M, Hansen K M, Andersen H E, Lauridsen T L, Liboriussen L, Beklioglu M, Özen A, Olesen J E. Climate change effects on runoff, catchment phosphorus loading and lake ecological state, and potential adaptations[J]. Journal of Environmental Quality, 2009, 38: 1930-1941.
[11] Lazzaro X. Do the trophic cascade hypothesis and classical biomanipulation approaches apply to tropical lakes and reservoirs[J]. Ver Int Verein Limnol, 1997, 26: 719-730.
[12] Jeppesen E, Søndergaard M, Meerhoff M, Lauridsen T L, Jensen J P. Shallow lake restoration by nutrient loading reduction-some recent findings and challenges ahead[J]. Hydrobiologia, 2007, 584: 239-252.
[13] Jeppesen E, Meerhoff M, Holmgren K, Gonzalez-Bergonzoni I, Teixeira-de Mello F, De Meester L, Søndergaard M, Lauridsen T L, Bjerring R, Conde-Porcuna J M, Mazzeo N, Iglesias C, Reizenstein M, Malmquist H J, Liu Z W, Balayla D, Lazzaro X. Impacts of climate warming on lake fish community structure and potential effects on ecosystem function[J]. Hydrobiologia, 2010, 646: 73-90.
[14] Dumont H J. On the diversity of the Cladocera in the tropics[J]. Hydrobiologia, 1994, 272: 27-38.
[15] Iglesias C, Mazzeo N, Meerhoff M, Lacerot G, Clemente J, Scasso F, Kruk C, Goyenola G, García-Alonso J, Amsinck S, Paggi J, José de Paggi S, Jeppesen E. High predation is of key importance for dominance of small-bodied zooplankton in warm shallow lakes: evidence from lakes, fish exclosures and surface sediments[J]. Hydrobiologia, 2011, 667: 133-147.
[16] Carpenter S R, Kitchell J F, Hodgson J R. Cascading trophic interactions and lake productivity[J]. BioScience, 1985, 35: 634-639.
[17] Ha J Y, Saneyoshi M, Park H D, Toda H, Kitano S, Homma T, Shiina T, Chang K H, HanazatoT. Lake restoration by biomanipulation using piscivore and Daphnia stocking; results of the biomanipulation in Japan[J]. Limnology, 2007: 1-12.
[18] Timms R M, Moss B. Prevention of growth of potentially dense phytoplankton populations byzooplankton grazing, in the presence of zooplanktivorous fish, in a shallow wetland ecosystem[J]. Limnology & Oceanography, 1984, 29: 472-486.
[19] Lauridsen T L, Lodge D M. Avoidance by Daphnia magna of fish and macrophytes: chemical cues and predator-mediated use of macrophyte habitat[J]. Limnology & Oceanography,1996,41:794-798.
[20] Jeppesen E, Jensen J P, Søndergaard M, Lauridsen T, Pedersen L J, Jensen L. Top-down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth[J]. Hydrobiologia, 1997, 342: 151-164.
[21] 陈光荣. 广东省城市湖泊浮游动物群落特征及生态效应研究[D]. 广州: 暨南大学, 2007.
[22] 李传红. 鱼类对热带潜水湖泊的影响及其在湖泊修复中的意义[D]. 广州: 暨南大学, 2008.
[23] 金相灿, 屠清瑛. 湖泊富营养化调查规范[M].北京:中国环境科学出版社, 1990: 43-82.
[24] 蒋燮治, 堵南山. 中国动物志(淡水枝角类)[M]. 北京: 科学出版社, 1979.
[25] 沈嘉瑞. 中国动物志(淡水桡足类)[M]. 北京:科学出版社, 1979.
[26] 刘蕾, 雷腊梅, 肖丽娟, 韩博平. 一座南亚热带小型水库水体营养状态与浮游植物的季节变化[J]. 生态科学, 2008, 27(2): 71-76.
[27] Hart R C. Zooplankton distribution in relation to turbidity and related environmental gradients in a large subtropical reservoir: patterns and implications[J]. Freshwater Biology, 1990, 24: 241-263.
[28] Schriver P, Bogestrand J, Jeppesen E. Impact of submerged macrophytes on fish-zooplankton-phytoplankton interactions: large-scale enclosure experiments in a shallow eutrophic lake[J]. Freshwater Biology, 1995, 33: 255-270.
[29] Pinto-Coelho, Pinel-Alloul, Havens. Crustacean zooplankton in lakes and reservoirs of temperate and tropical regions: variation with trophic status[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2005, 62: 348-316.
[30] 邱小琮, 赵红雪, 孙晓雪. 沙湖浮游动物与环境因子关系的多元分析[J]. 生态学杂志, 2012, 31(4): 896-901.
[31] Dodson S I. Zooplankton competition and predation: an experimental test of the size-efficiency hypothesis[J]. Ecology, 1974, 55: 605-613.
[32] Santer B, Lampert W. Summer diapause in cyclopoid copepods: adaptive response to a food bottleneck[J]. Animal Ecology, 1995, 64: 600-613.
[33] 陈光荣, 张修峰, 钟萍, 刘正文. 惠州西湖浮游动物及其与水质的关系[J]. 湖泊科学, 2008, 20(3): 351-356.
[34] Gillooly J F, Dodson S I. Latitudinal patterns in the size distribution and seasonal dynamics of new world, freshwater cladocerans[J]. Limnology & Oceanography, 2000, 45: 22-30.
[35] Basu B K, Kalff J, Pinel-Alloul B. The influence of macrophyte beds on plankton communities and their export from fluvial lakes in the St. Lawrence River[J]. Freshwater Biology, 2000, 45: 373-382.
[36] 胡春英. 不同湖泊演替过程中浮游动物数量及多样性的研究[J]. 水生生物学报, 1999, 23(3) : 217-226.
[37] 杨凤娟, 杨扬, 潘鸿. 强化生态浮床原位修复技术对污染河流浮游动物群落结构的影响[J]. 湖泊科学,2011, 23(4): 498-504.
[38] 谢平, 诸葛燕, 戴莽, 高村典子. 水体富营养化对浮游生物群落多样性的影响[J]. 水生生物学报, 1996, 20(增刊): 47-49.
[39] Giliwcz Z M, Pijanowska J. The role of predation in zooplankton succession[M]. In Ulrich Sommer:Plankton Ecology: Succession in Plankton Communities, 1989.
[40] Hall D J, Threlkeld S T, Burns C W. The size-efficiency hypothesis and size structure of zooplankton communities[J]. Annual Review of Ecology and Systematics, 1976, 7: 177-208.
[41] Brooks J L, Dodson S I. Predation,body size and composition of plankton[J]. Science, 1965, 150: 28-35.
[42] 陈光荣, 刘正文, 钟萍, 李金花, 燕晓雯, 刘平平. 热带城市湖泊生态恢复中水生植被、浮游动物和鱼类的关系研究[J]. 生态环境, 2007, 16(1): 1-7.
[43] Ives A R, Carpenter S R, Dennis B. Community interaction webs and zooplankton responses to planktivory manipulations[J]. Ecology, 1999, 80: 1405-1421.
[44] Lazzaro X, Starling F. Using biomanipulation to control eutrophication in a shallow tropical urban reservoir (Lago Paranoà, Brazil). In Reddy MV (ed.), Restoration and management of tropical eutrophic lakes[J]. Oxf IBH Publ Co Pvt Ltd, Sci Publ Inc, New Delhi, New Hampshire, USA pp, 2005, 361-387.
[45] Fernando C H. Zooplankton, fish and fisheries in tropical freshwaters[J]. Hydrobiologia, 1994, 272: 105-140.
[46] 鲁敏, 谢平. 武汉东湖不同湖区浮游甲壳动物群落结构的比较[J]. 海洋与湖沼学, 2002, 33(2):174-181. |