From October 8th to November 11th 2012, Toxcontrol on-line biomonitor toxicity system located at Site 3 was used to carry out the research of automated biotoxicity monitoring in drinking water sources of Tianjin. At the same time, pH, concentration of NH3-N, CODMn and DO at Site 3 and Site 4 were monitored. Totally 210 sets of effective data were obtained from the biotoxicity monitoring system during the pilot run period. The toxicity of the samples ranged from -52% to 21%, all of which was less than 30%, and did not exceed the alarm threshold. The values of pH, concentration of NH3-N, CODMn, and DO obtained simultaneously were up to the standard III of the "Surface Water Quality Standard". Significantly negative correlations were revealed between toxicity and the concentration of NH3-N (sig.<0.05), suggesting that NH3-N with a suitable concentration might play key roles in promoting the growth or light-emitting of the bacteria.
张震, 卞少伟*, 梅鹏蔚, 王萌, 王海英, 武丹. 生物毒性自动监测系统在天津饮用水源地的应用[J]. , 2013, 32(3): 345-350.
ZHANG Zhen, BIAN Shao-wei*, MEI Peng-yu, WANG Meng, WANG Hai-ying, WU Dan. Automated biotoxicity monitoring system used in drinking water sources of Tianjin. , 2013, 32(3): 345-350.
[1] 杨鲁豫, 王琳, 王宝贞. 我国水资源污染治理的技术策略[J]. 给水排水, 2001, 27(1): 94-101.
[2] 谢红霞, 胡勤海. 突发性环境污染事故应急预警系统发展探讨[J]. 环境污染与防治, 2004, 1: 64-69.
[3] 李生才, 王亚军, 黄平. 2005 年11-12 月国内环境事件数据[J]. 安全与环境学报, 2006, 6(4): 138-140.
[4] 胡晓镭, 孙国敏, 黄俊. 饮用水源地水质应急监测技术探析[J]. 华北水利水电学院学报, 2009, 30(1): 96-98.
[5] Lee C M and Allen H E. The ecological risk assessment of copper differs from that of hydrophobic organic chemicals[J]. Human and Ecological Risk Assessment, 1998, 4: 605-617.
[6] 郁建桥, 钟声, 王经顺. 生物毒性检测技术在水质应急和预警监测过程中的应用[J]. 生命科学仪器, 2009, 7(12): 16-18.
[7] 黄满红, 李咏梅, 顾国维. 生物测试方法在城市污水毒性评价中的应用[J]. 同济大学学报自然科学版, 2005, 33(11): 1489-1493.
[8] 彭强辉, 陈明强, 蔡强, 刘辉, 何苗, 陈明功. 水质生物毒性在线监测技术研究进展[J]. 环境监测管理与技术, 2009, 21(4): 12-16.
[9] Dunlap P V, Tsukamoto K K. Luminous Bacteria[J]. Prokaryotes, 2006(2): 863-892.
[10] 朱丽娜. 基于发光细菌法的水质综合毒性研究[D]. 北京: 中央民族大学, 2012.
[11] ISO 11348-3, 水质—有关费歇尔弧菌属的光发射水样品的抑制效果的测定(发光细菌试验) [S].
[12] GB 3838-2002, 地表水环境质量标准[S].
[13] 马梅. 新的生物毒性测试方法及其在水生态毒理中的应用[D]. 北京: 中国科学院研究生院, 2002.
[14] 刘秀. 饮用水生物毒性分析及控制技术研究[D]. 长春: 吉林大学, 2011.
[15] Latala A, Stepnowski P, Nedzi M, et al. Marine toxicity assessment of imidazolium ionic liquids: acute effects on the baltic algae oocystis submarina and cyclotella meneghiniana[J]. Aquatic Toxicology, 2005, 73(1): 91-98.
[16] Rosmary M K, Christine S, Roman B, et al. Screening for unicellular algae as possible bioassay organisms for monitoring marine water samples[J]. Water Research, 2006, 40: 2695-2703.
[17] Bengtson Nash S M, Quayle P A, Schreiber U, et al. The selection of a model microalgal species as biomaterial for a novel aquatic phytotoxicity assay[J]. Aquatic Toxicology, 2005, 72: 315-326.
[18] Junho J, Joon H K, Byung C L, et al. Development of a new biomonitoring method to detect the abnormal activity of Daphnia magna using automated Grid Counter device[J]. Science of the total environment, 2008, 389: 545-556.
[19] Michels E, Leynen M, Cousyn C, et al. Phototactic behavior of daphnia as a tool in the continuous monitoring of water quality : experiments with a positively phototactic daphnia magna clone[J]. Water Research, 1999, 33: 401-408.
[20] Watson S B, Jüttner F, Kpster O. Daphnia behavioural responses to taste and odour compounds: ecological significance and application as an inline treatment plant monitoring tool[J]. Water Science and Technology, 2007, 55(5): 23-31.
[21] Aruldoss J A, Viraraghavan T. Toxicity testing of refinery wastewater using Microtox[J]. Bull Environ Contam Toxicol, 1998, 60: 456-463.
[22] Byoung C K, Man B G. A multi-channel continuous water toxicity monitoring system: its evaluation and application to water discharged from a power plant[J]. Environmental Monitoring and Assessment, 2005, 109(3): 156-164.
[23] Harald T, Hader D P. Fast examination of water quality using the automatic biotest ECOTOX based on the movement behavior of a freshwater flagellate[J]. Water Research, 1999, 33: 426-432.
[24] Rathinam K, Mohanan P V. Microtox system, a new approach to the safety evaluation of medical devices[J]. Journal of biomaterials applications, 1998, 13(2): 166-171.
[25] Howard B G, JoAnn M B. Real-time remote monitoring of water quality: a review of current applications,and advancements in sensor, telemetry, and computing technologies[J]. Journal of Experimental Marine Biology and Ecology, 2004, 300: 409-448.
[26] Arnold G. Treatment of Lake Water: Using the Example of the Maennedorf Lake Water Plant[J]. Gas Wasser Abwasser, 2006, 86(9): 701-707.
[27] Kabil A S, Chris D M. Fish micronuclei for assessing genotoxicity in water[J]. Mutation Research, 1995, 343: 121-135.
[28] 彭强辉, 陈明强, 蔡强, 刘辉, 何苗, 陈明功. 水质生物毒性在线监测技术研究进展[J]. 环境监测管理与技术, 2009, 21(4): 12-16.
[29] Choutea U C, Dzyadevyc H S, Chovelon J M, et al. Development of novel conductometric biosensors based on immobilized whole cell chlorella vulgaris microalgae[J]. Biosens Bioelectron, 2004, 19(9): 1089- 1096.
[30] 吴泳标, 张国霞, 许玫英, 张家强, 孙国萍. 发光细菌在水环境生物毒性检测中应用的研究进展[J]. 微生物学通报, 2010, 37(8): 1222-1226.
[31] Toussaint M W, Brennan L M, Rosencrance A B, et al. Acute toxicity of four drinking water disinfection by 2 products to Japanese medaka fish[J]. Bull Environ Contam Toxicol, 2001, 66: 255- 262.
[32] GB/T13266-91, 水质—物质对蚤类(大型蚤)急性毒性测定方法[S].
[33] GB/T13267-91, 水质—物质对淡水鱼(斑马鱼)急性毒性测定方法[S].
[34] ISO 7346 1-3, 水质—物质对淡水鱼(斑马鱼 Brachydanio rerio)急性致死毒性的测定[S].
[35] GB/T 15441-1995, 水质—急性毒性的测定发光细菌法[S].
[36] 徐宁, 王萌, 孙凯峰, 胡章喜, 段舜山. 有机氮对大亚湾亚历山大藻种群生长的促进作用[J]. 中国环境科学, 2012, 32(3): 48-55.
[37] 胡晓娟, 杨宇峰, 张俊, 毛洁. 广东南澳养殖海域细菌数量及其环境因子关系[Z]. 环境污染与大众健康学术会议, 上海, 2012.
[38] 李璇, 蔡磊明, 汤保华, 张亚楠, 赵榆, 陈朗. 几种有机化合物与重金属对发光细菌的联合毒性[J]. 农药, 2011, 50(5): 365-368.