|
|
森林生态系统根系分泌物介导植物—土壤—微生物互作关系研究进展#br# |
刘雅静, 邢华, 吴宪, 刘宇*
|
华东师范大学生态与环境科学学院华东师范大学—阿尔伯塔大学生物多样性联合实验室, 上海 200241
|
|
|
摘要 根系分泌物(root exudates, REs)是从植物根部主动或被动释放的一组化合物, 持续给根际土壤提供养分和能量, 进而改变了土壤营养环境并吸引特定微生物在根际富集。这些化合物不仅能辅助根系定植, 而且也是植物、土壤和微生物之间相互作用的基础。在植物根系与土壤微生物相互作用的过程中形成的互利共生或竞争的关系, 体现了两者在漫长进化过程中形成的资源获取策略。REs启动和调节植物根系—土壤—微生物之间的对话, 在土壤生态系统中发挥着关键作用。通过回顾影响REs的潜在因素, 对REs组成种类和调节功能进行归纳总结, 并剖析了REs介导的植物与根际微生物的相互作用以及阐释了REs在森林生态系统中的重要性。此外, 进一步以REs介导的植物—土壤—微生物互作关系为主题展开论述, 以期为全面理解REs对植物和土壤群落间动态反馈作用的相关研究提供参考, 进而有助于深入认识森林生态系统地下过程以及全面揭示土壤微生物对森林树种多样性的维持作用。
|
|
|
[1] |
张文文1,2, 李俊伟2, 李婷2, 朱长波2, 张博2, 苏家齐2, 陈素文2,*. 紫外线照射培养用水对海萝孢子萌发生长的影响[J]. 生态科学, 2025, 44(3): 1-. |
[2] |
唐勇波1,*, 丰娟2,龚国勇2, 彭涛3. 非负矩阵分解的江西省资源环境承载力评价[J]. 生态科学, 2025, 44(3): 63-. |
[3] |
刘延国1, 李景吉2, 邹强3,*,逯亚峰3. 地形急变流域生态保护修复分区研究——以大渡河流域为例[J]. 生态科学, 2025, 44(3): 112-. |
[4] |
李金桓1,2,3, 刘守江1,2,3,*, 余宇首1, 王自豪1,2, 陈曦1,2. 安宁河谷云南松种群年龄结构及点格局分析[J]. 生态科学, 2025, 44(3): 135-. |
[5] |
葛晓敏, 周旭, 陈水飞, 胡亚萍, 郑笑, 丁晖*. 武夷山常绿阔叶林凋落物量、养分归还动态及其与气候因子的关系[J]. 生态科学, 2025, 44(3): 161-. |
[6] |
姜晓彤1, 徐智广1, 刘婷2, 严芳1,*. 温度和硝氮浓度对漂浮型铜藻的生理影响[J]. 生态科学, 2025, 44(3): 169-. |
[7] |
李金婕1, 陈扬1, 和育超2,*, 张彩彩1,3,*, 黄志旁1,3,4. 镰果杜鹃种群空间分布格局及关联性[J]. 生态科学, 2025, 44(3): 178-. |
[8] |
马智媛1, 祝明建1,*, 栾博2. 基于ESV和电路理论的粤港澳大湾区生态网络搭建[J]. 生态科学, 2025, 44(3): 8-. |
[9] |
曾怡娟1, 向昆仑2,*, 王刚3, 张柳红4, 李俊杰5, 邓玉娇2, 徐杰2. 2000—2021年广东省植被净初级生产力时空变化及其影响因子分析[J]. 生态科学, 2025, 44(3): 74-. |
[10] |
祁闻1,2,3, 陈克龙2,3,*, 李琳2,3, 李炎坤1,2. 模拟增温对青海湖高山嵩草夏季光合作用日变化特征的影响[J]. 生态科学, 2025, 44(3): 197-. |
[11] |
刘艺璇1, 杨玉筝1, 黄浩1, 郭先华1,2,*, 詹惠文1, 张子薇1, 刘倩辰1. 基于FLUS模型的大理市土地利用变化与模拟分析[J]. 生态科学, 2025, 44(3): 212-. |
[12] |
罗赵慧1, 2, 王一超1, 2, 朱璐平1, 2, 张晓君1, 2, 裴金铃1, 2, 杨晓1, 2, 王欣1, 2, . 粤港澳大湾区景观格局演变及其对生态系统服务价值影响[J]. 生态科学, 2025, 44(3): 40-. |
[13] |
张蔷1,2, 李令军1,2,*, 鹿海峰1,2, 刘保献1,2, 赵文慧1,2, 李琪1,2, 秦丽欢1,2, . 基于高分辨率卫星影像的北京城市绿地动态特征分析[J]. 生态科学, 2025, 44(3): 51-. |
[14] |
刘杰1,3, 汲玉河2,3,*, 周梦子2,3, 周广胜2,3, 李成龙1,3. 基于TEM的千烟洲森林生态系统碳动态模拟[J]. 生态科学, 2025, 44(3): 95-. |
[15] |
于童洲1, 周立业1, 徐振朋2, 温校一1, 安海波1, *. 不同施氮水平对饲用燕麦产量和土壤N2O排放的影响[J]. 生态科学, 2025, 44(3): 104-. |
|
|
|
|