Micioalgal photosynthetic hydrogen production is an effective way to solve our energy crisis.This review summarized the mechanism of microalgal photosynthetic hydrogen production,including hydrogen production catalysed by nitrogenase and reversible hydrogenase in cyanobacteria,and also by reversible hydrogenase in green algae.Based on analysis of the limiting fators of photosynthetic hydrogen production,both the classical mutagenesis/screen approach and the molecular biology approach were recommended to improve the hydrogen production rate.Hydrogen production by nitrogenase,direct biophotolysis and indirect biophotolysis were compared to show indirect biophotolysis by green algae have the greatest potential for future applied R&D.The prospects of microalgal photosynthetic hydrogen production were discussed.
韩志国1, 李爱芬1, 龙敏南2, 韩博平1*. 微藻光合作用制氢——能源危机的最终出路?[J]. , 2003, 22(2): 104-108.
HAN Zhi-guo1, LI Ai-fen1, LONG Min-nan2, HAN Bo-ping1. Microalgal photosynthetic hydrogen production:the ultimate answer to global energy crisis?. , 2003, 22(2): 104-108.
[12] Adams M W W. 1990. The structure and mechanism of iron-hydrogenases[J]. Biochimica et Biophysica Acta, 1020:115-145.
[13] Appel J, Phunpruch S, Schulz R. 1998. Hydrogenase(s) in Synechocystis:tools for photohydrogen production?[A] In:Zaborsky O R(ed). BioHydrogen[C]. New York:Plenum Press.189-196.
[14] Appel J, Schulz R. 1998. Hydrogen metabolism in organisms with oxygenic photosynthesis:hydrogenases as important regulatory devices for a proper redox poising?[J] Journal of Photochemistry and Photobiology B:Biology, 47:1-11.
[15] Benemarn J R. 2000. Hydrogen production by microalgae[J].Journal of Applied Phycology, 12:291-300.
[16] Carrasco C D, Garcia J S, Golden J W. 1998. Programmed DNA rearrangement of a hydrogenase gene during Anabaena heterocyst development[A]. In:Zaborsky O R(ed). BioHydrogen[C]. New York:Plenum Press. 203-207.
[17] Cournac L, Mus F, Bernard L, et al. 2002. Limiting steps of hydrogen production in Chlamydomonas reinhardtii and Synechosystis PCC 6803 as analysed by light-induced gas exchange transients[J]. International Journal of Hydrogen Energy,27:1229-1237.
[18] Florin L. Tsokoglou A, Happe T. 2001. A novel type of iron hydrogenase in the green alga Scenedesmus obliquus is linked to the photosynthetic electron transport chain[J]. The Journal of Biological Chemistry, 276:6125-6132.
[19] Ghirardi M L Zhang L P, Lee J W, et al. 2000a. Microalgae:a green source of renewable H2[J]. Trends in Biotechnology, 18:506-511.
[20] Ghirardi M L, Zheng H, Forestier M, et al. 2000b. Development of an efficient algal H2-production system[A]. In:Proceedings of the 2000 U.S. DOE Hydrogen Program Review[C] 1-10.NREL/CP-570-28890.
[21] Hallenbeck P C, Benemann J R. 2002. Biological hydrogen production:fundamentals and limiting processes[J]. International Journal of Hydrogen Energy, 27:1185-1193.
[22] Happe T, Hemschemeier A, Winkler M, et al. 2002.Hydrogenases in green algae:do they save the algae's life and solve our energy problems?[J] Trends in Plant Science, 7:246-250.
[23] Happe T, Mosler B, Naber J D. 1994. Induction, localization and metal content of hydrogenase in the green alga Chlamydomonas reinhardtii[J]. European Journal of Biochemistry, 222:769-774.
[24] Lindblad P, Christensson K, Lindberg P, et al. 2002.Photoproduction of H2 by widetype Anabaena PCC 7120 and a hydrogen uptake deficient mutant:from laboratory experiments to outdoor culture[J]. International Journal of Hydrogen Energy y,27:1271-1281.
[25] Melis A. 2002. Green alga hydrogen production:progress,challenges and prospects[J]. International Journal of Hydrogen Energy, 27:1217-1228.
[26] Melis A, Happe T 2001. Hydrogen production:green algae as a souce of energy[J]. Plant Physiology, 127:740-748.
[27] Melis A, Zhang L P, Forestier M, et al. 2000. ned photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii[J]. Plant Physiology, 122:127-135.
[28] Miyake J, Miyake M, Asada Y. 1999. Biotechnological hydrogen production:research for efficient light energy conversion[J].Journal of Biotechnology, 70:89-101.
[29] Schulz R, Schnackenberg J, Stangier K, et al. 1998. Light-dependent hydrogen production of the green alga Scenedesmus obliquus[A]. In:Zaborsky O R(ed).BioHydrogen[C]. New York:Plenum Press. 243-251.
[30] Seibert M, Flynn T, Benson D, et al. 1998. Development of selection and screening procedures for rapid identification of H2-producing algal mutants with increased O2 tolerance[A]. In:Zaborsky O R(ed). BioHydrogen[C]. New York:Plenum Press.227-234.
[31] Tsygankov A, Kosourov S, Seibert M, et al. 2002. Hydrogen photoproduction under continuous illumination by sulfur-deprived,synchronous Chlamydomonas reinhardtii cultures[J].International Journal of Hydrogen Energy, 27:1239-1244.
[32] Vignais P M, Billoud B, Meyer J. 2001. Classification and phylogeny of hydrogenases[J]. FEMS Microbiology Reviews, 25:455-501.
[33] Zhang L P, Happe T, Melis A. 2002. Biochemical and morphological characterization of sulfur-deprived and H2-producing Chlamydomonas reinhardtii (green alga)[J]. Planta,214:552-561.