The biomass allometric models of Pinus tabulaeformis, Betula dahurica Pall, Tilia mandshurica, Acer mono Maxim and Larix principis-rupprechtii have been built after measuring the biomass of main species in Badaling Forest Farm using standard block method. The result shows that the allocation proportion of main species biomass in descending order is Acer mono>Pinus tabulaeformis>Tilia mandshurica>Betula dahurica>Larix principis-rupprechtii. The biomass of each main species is 93.28 t/hm2 (Acer mono Maxim), 86.40 t/hm2 (Pinus tabulaeformis), 50.24 t/hm2(Tilia mandshurica), 36.05 t/hm2(Betula dahurica Pall), and 20.21 t/hm2(Larix principis-rupprechtii), and the total of five amounts to 286.17 t/hm2. The result calculated by IPCC model indicates that different species produce different biomass in the same time, and the discrepancy of biomass calculation might be caused by the difference in method of allometric model setting. The result could benefit the biomass calculation of different tree species a lot and promote to set up a general allometric model.
[1] Goodale cl, Apps M J, Birdsey R A. Forest carbon sinks in the northern hemisphere[J]. Ecological Applications, 2002, 12(3): 891-899.
[2] Hayama. IPCC. Good practice guidance and uncertainty management in national greenhouse gas inventories[C]. IPCC/OECD/IEA/IGES, 2000.
[3] Browns. Measuring carbon in forests: current status and future challenges[J]. Environment Pollution, 2002, 116(3): 363-372.
[4] 赵学明,刘冬兰,郑小贤. 北京八达岭林场森林多功能评价指标体系探讨[J]. 林业资源管理, 2010, 6(3): 45-49.
[5] Guo Z D, Fang J Y, Pan Y D. Inventory-based estimates of forest biomass carbon stocks in China: A comparison of three methods[J]. Forest Ecology and Management, 2010, 259: 1225-1231.
[6] Fang J Y, Guo Z D, Piao S L. Terrestrial vegetation carbon sinks in China,1981-2000[J]. Science in China Series D:Earth Science, 2007, 50(9): 1341-1350.
[7] Zhou G S, Wang Y H, Jiang Y L. Estimation of biomass and net primary productivity of major planted forests in China based on forest inventory data:a case study of China's Larix forests[J]. Forest Ecology and Management, 2002, 169: 149-157.
[8] Fang J Y, Wang Z M. Forest biomass estimation at regional and global level,with special reference to China's forest biomass[J]. Ecological Research, 2001, 16, 587-592.
[9] Brown S L, Schroeder P E. Spatial patterns of aboveground production and mortality of woody biomass for Eastern U.S. forests[J]. Ecological Application,1999,9(3): 968-980.
[10] Teobaldelli M, Somogyi Z, Migliavacca M. Generalized functions of biomass expansion factors for conifers and broadleaved by stand age, growing stock and site index[J]. Forest Ecology and Management, 2009, 257: 1004-1013.
[11] 魏建祥, 曾伟生. 论北京市一元立木材积表的数式化方法[J]. 林业资源管理, 2009, 12: 44-45.
[12] Lehtonenaa, Makipaar, Heikkinen J. Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests[J]. Forest Ecology and Management, 2004, 188: 211-24.
[13] 樊登星, 余新晓, 岳永杰. 北京是森林碳储量及其动态变化[J]. 北京林业大学学报, 2008, 30(增刊2): 117-120.
[14] 张茂震, 王广兴. 浙江省森林生物量动态[J]. 生态学报,2008, 28(11): 5665-5674.
[15] 程堂仁, 马钦彦, 冯仲科. 甘肃小陇山森林生物量研究[J].北京林业大学学报, 2007, 29(1): 31-36.
[16] 方精云, 刘国华, 朱彪. 北京东灵山三种温带森林生态系统的碳循环[J]. 中国科学D 辑: 地球科学, 2006, 36(6):533-543.
[17] 罗云建, 张小全, 王效科. 华北落叶松人工林生物量及其分配模式[J]. 北京林业大学学报, 2009, 31(1): 13-18.
[18] 贺红早, 黄丽华, 段旭. 贵阳二环林带主要树种生物量研究[J]. 贵州科学, 2007, 25(3): 33-39.
[19] 狄文斌, 郑小贤. 东北过伐椴树生长过程与生长模型的研究[J]. 江西林业科技, 2006, 1: 3-9.
[20] 王光华,刘琪璟,刘文慧. 北京主要森林类型碳储量[J].北京林业大学学报, 2011, 33(增刊1): 84-89.
[21] 张小全, 朱建华, 侯振宏. 主要发达国家林业有关碳源汇及其计量方法与参数[J]. 2009, 22(2): 285-293.