The marine macroalga Porphyra haitanensis (Bangiales, Rhodophyta) was cultured at different temperatures (15℃ and 25℃) and CO2 concentrations (390 μL/L and 700 μL/L), so as to investigate the effects of temperature and CO2 concentration on the growth and thermal characteristics of this species. The results showed that algae grown at 15℃ had higher relative growth rate and pigment contents (Chla and Car) than at 25℃. Such temperature effects were more pronounced at high CO2 concentrations. Additionally, algae grown at 15℃ showed higher levels of soluble protein and soluble carbohydrate. When exposed to 10℃ stress for 3 h, algae grown at 15℃ exhibited a slower decline in maximum photochemical quantum yield (Fv/Fm), photosynthetic light use efficiency (α) and non-photochemical quenching (NPQ) as compared to those grown at 25℃. When treated with 35℃ for 3 h, the rETRmax, Fv/Fm and α all decreased, with the algae grown at 15℃ displaying higher decrease extent than those at 25℃. However, such decrease was less pronounced in the algae cultured at high CO2 concentrations as compared to those cultured at normal CO2 Concentration. When treated with 40℃, the rETRmax, Fv/Fm, α, NPQ and qP drastically decreased. Our results suggested that elevated CO2 improved the heat endurance in P. haitanensis.
丁柳丽, 刘露, 邹定辉*. 不同温度与CO2浓度对坛紫菜生长和光合作用温度反应特性的影响[J]. , 2013, 32(2): 151-157.
DING Liu-li, LIU Lu, ZOU Ding-hui*. Effects of different temperature and CO2 concentrations on the growth and photosynthetic response to temperature in Porphyra haitanensis. , 2013, 32(2): 151-157.
[1] IPCC. Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[R]. Geneva: IPCC, 2007. 104.
[2] Florides G A, Christodoulides P. Global warming and carbon dioxide through sciences[J]. Environment International, 2009, 35: 390-401.
[3] Caldeira K, Wickett M E. Anthropogenic carbon and ocean pH[J]. Nature, 2003, 425: 365.
[4] Brierley A S, Kingsford M J. Impacts of climate change on marine organisms and ecosystems[J]. Current Biology, 2009, 19(14): 602-614.
[5] 张继红, 方建光, 唐启升. 中国浅海贝藻养殖对海洋碳循环的贡献[J]. 地球科学进展, 2005, 20(3): 359-365.
[6] 宋金明, 李学刚, 袁华茂, 郑国侠, 杨宇峰. 中国近海生物固碳强度与潜力[J]. 生态学报, 2008, 28(2): 551-558.
[7] Zou D H, Gao K S. Effects of desiccation and CO2 concentrations on emersed photosynthesis in Porphyra haitanensis (Bangiales, Rhodophyta), a species farmed in China[J]. European Journal of Phycology, 2002, 37(4): 587-592
[8] 张元, 谢潮添, 陈昌生, 纪德华, 周巍巍. 高温胁迫下坛紫菜叶状体的生理响应[J]. 水产学报, 2011, 35(3): 379-386.
[9] Schreiber U. Pulse-Amplitude-Modulation (PAM) fluorometry and saturation pulse method: an overview. Chlorophyll a fluorescence: a signature of photosynthesis[M]. Berlin: Springer, 2004. 279-319.
[10] Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72: 248-254.
[11] Kochert G. Carbohydrate determination by phenol-sulfuric acid method. Handbook of phycological methods: physiological and biochemical methods[M]. London: Cambridge University Press, 1978. 95-97.
[12] Jensen A. Chlorophylls and carotenoids. Handbook of phycological methods: physiological and biochemical methods[M]. London: Cambridge University Press, 1978. 61-69.
[13] Zou D H. Effects of elevated atmospheric CO2 on growth, photosynthesis and nitrogen metabolism in the economic brown seaweed, Hizikia fusiforme (Sargassaceae, Phaeophyta)[J]. Aquaculture, 2005, 250: 726-735.
[14] Gordillo F J L, Niell F X, Figueroa F L. Non-photosynthetic enhancement of growth by high CO2 level in the nitrophilic seaweed Ulva rigida C. Agardh (Chlorophyta)[J]. Planta, 2001, 213: 64-70.
[15] 邹定辉, 陈雄文. 高浓度CO2对条浒苔(Enteromorpha clathrata)生长和一些生理生化特征的影响[J]. 海洋通报, 2002, 21(5): 38-45.
[16] Zou D H, Gao K S. Effects of elevated CO2 on the red seaweed Gracilaria lemaneiformis (Gigartinales, Rhodophyta) grown at different irradiance levels[J]. Phycologia, 2009, 48 (6): 510-517.
[17] 邹定辉, 高坤山, 阮作喜. 高CO2浓度对石莼光合作用及营养盐吸收的影响[J]. 青岛海洋大学学报, 2001, 31 (6): 877-882.
[18] Israel A, Hophy M. Growth, photosynthetic properties and Rubisco activities and amounts of marine macroalgae grown under current and elevated seawater CO2 concentrations[J]. Global Change Biological, 2002, 8(9): 831-840.
[19] Israel A, Katz S, Dubinsky Z, Merrill J E, Friedlander M. Photosynthetic inorganic carbon utilization and growth of Porphyra linearis (Rhodophyta)[J]. Journal of Applied Phycology, 1999, 11: 447-453.
[20] García-sánchez M J, Fernández J A, Niell X. Effect of inorganic carbon supply on the photosynthetic physiology of Gracilaria tenuistipitata[J]. Planta, 1994, 194: 55-61.
[21] Makino A, Mae T. Photosynthesis and plant growth at elevated levels of CO2[J]. Plant and Cell Physiology, 1999, 40(10): 999-1006.
[22] Xia J R, Gao K S. Impacts of elevated CO2 concentration on biochemical composition, carbonic anhydrase, and nitrate reductase activity of freshwater green algae[J]. Journal of Integrative Plant Biology, 2005, 47(6): 668-675
[23] 郭赣林, 董双林, 董云伟. 温度及其波动对孔石莼生长及光合作用的影响[J]. 中国海洋大学学报, 2006, 36(6): 941-945.
[24] Davison I R. Environmental effects on algal photosynthesis: temperature[J]. Journal of Phycology, 1991, 27(1): 2-8.
[25] 梁英, 冯力霞, 尹翠玲, 曹春晖. 高温胁迫对三角褐指藻和纤细角毛藻叶绿素荧光动力学的影响[J]. 中国海洋大学学报, 2006, 36(3): 427-433.
[26] 梁英, 冯力霞, 田传远, 王帅. 高温胁迫对盐藻和塔胞藻叶绿素荧光动力学的影响[J]. 中国水产科学, 2007, 14(6): 961-968.
[27] Zou D H, Liu S X, Du H, Xu J T. Growth and photosynthesis in seedlings of Hizikia fusiformis (Harvey) Okamura (Sargassaceae, Phaeophyta) cultured at two different temperatures[J]. Journal of Applied Phycology, 2012, 24: 1321-1327.
[28] Ralph P J, Gademann R. Rapid light curves: A powerful tool to assess photosynthetic activity[J]. Aquatic Botany, 2005, 82: 222-237.
[29] 武宝玕, 韩志国, 藏汝波. 热胁对海洋红藻及绿藻叶绿素荧光的影响[J]. 暨南大学学报(自然科学版), 2002, 23(1): 108-112.
[30] Taub D R, Seemann J R, Coleman J S. Growth in elevated CO2 protects photosynthesis against high-temperature damage[J]. Plant, Cell and Environment, 2000, 23: 649-656.