Mechanism and ecological effect of river-transported silicon flux reduction
LIU Ming1, ZHI Chong-yuan1,2, LI Kai3
1, School of Life Sciences, Guizhou Normal University, Guiyang 550001, China; 2. Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of GuiZhou Province, Guiyang 550001, China; 3. Bijie Longchangying Middle School of Guizhou Province, Guizhou, Bjie 551707, China
The mechanisms of river-transported silicon flux reduction are analyzed from several aspects including damming, diatom absorption and fixation, fishery, water eutrophication and hydrological changes; besides, the ecological effect of river-transported silicon flux reduction on river, estuary and inshore is evaluated. The results indicate that river-transported silicon flux reduction greatly impacts the geochemical cycle of silicon, resulting in an ecological imbalance. Diatom is a major factor responsible for the river-transported silicon flux reduction. The dissolved silicon in the water body of reservoir is taken up and utilized by diatom. Ultimately the silicon sedimentates and stores in the bottom of reservoir after the death of diatom, which leads to a lack of dissolved silicon in downstream river and ocean, and this brings about serious ecological effect on human beings.
[1] Treguer P, Nelson D M, Bennekom A J, et al.The silica balance in the world ocean:A reestimate[J].Science, 1995, 268:375-379.
[2] James P M S, Charles J V, Albert J K, et al.Impact of Humans on the Flux of Terrestrial Sediment to the Global Coastal Ocean[J].Science, 2005, 308:376-380.
[3] Humborg C, Conley D J, Rahm L, et al.Silicon retention in river basins:Far-reaching effects on biogeochemistry and aquatic food webs in coastal marine environments[J].A Journal of the Human Environment, 2000, 9:45-50.
[4] Friedl G, Teodoru C, Wehrli B.Is the Iron Gate I reservoir on the Danube River-a sink for dissolved silica[J].Biogeochemistry, 2004, 68:21-32.
[5] World.Commission on Dams.Dams and development:a new framework for decision-making[M].London, UK:Earthscan Publications.2000.
[6] Mccully P.Silenced rivers:the ecology and politics of large dams[M].London, UK:Zed Books.1996.
[7] Hamilton D P, Schladow S G.Prediction of water quality in lakes and reservoirs, Part Ⅰ.model description[J].Ecological Modelling, 1997, 96:91-110.
[8] Friedl G, Wuest A.Disrupting biogeochemical cycles-Consequences of damming[J].Aquatic Sciences, 2002, 64:55-65.
[9] 余立华, 李道季, 方涛, 等.三峡水库蓄水前后长江口水域夏季硅酸盐、溶解无机氮分布及硅氮比值的变化[J].生态学报, 2006, 26(9):2817-2726.
[10] Naoshige G, Takuro I, Tetsuji A, et al.Environmental factors which influence the sink of silica in the limnetic system of the large monomictic Lake Biwa and its watershed in Japan[J].Biogeochemistry, 2007, 84:285-295..
[11] Humborg C, Lttekkot V, Cociasu A, et al.Effect of Danube River dam on Black Sea biogeochemistry and ecosystem structure[J].Nature, 1997, 386:385-388.
[12] 刘丛强.生物地球化学过程与地表物质循环[M].北京:科学出版社.2007.
[13] Hori T, Itasaka O, Mitamura O.The removal of dissolved silica from freshwater in the Lake Biwa-ko[J].Mem Fac Liberal Arts Educ Shiga Univ., 1969, 19:45-51.
[14] 支崇远.硅藻与环境--东海南部陆缘硅藻与古环境[M].北京:海洋出版社.2006:1-8.
[15] Negoro K.An analytical study of diatom shells in the bottom deposits of Lake Biwa-ko, based on a new coresample[J].Jpn J Limnol, 1967, 28:132-135.
[16] Reynolds C S.The ecology of freshwater phytoplankton[M].Cambridge University Press, New Yor.1984.
[17] 高学鲁, 宋金明.2003年5月长江口内外溶解态无机氮、磷、硅的空间分布及日变化[J].海洋与湖沼, 2007, 38(5):420-430.
[18] Barker P, Frontes J C, Games F, et al.Experimental dissolution of diatom silica in concentrated salt solutions for paleoenvironmental reconstruction[J].Limnology and Oceanography, 1994, 39:99-110.
[19] Marshall W L, Warakomski J M.Amorphous silica solubilities.Ⅱ.effect of aqueous salt solutions at 25℃[J].Geochimica et cosmochimica Acta, 1980, 44:915-924.
[20] 毛战坡, 王雨春, 彭文启, 等.筑坝对河流生态系统影响研究进展[J].水科学进展, 2005, 16(1):134-140.
[21] Vidal J.Effects of phycoplankton concentration, temperature and body size on the development and molting rates of Calanus pacificus and Pseudocalanus[J].Mar.BioL., 1980, 56:134-145.
[22] Schklske C L, Conley D J, Stoermer E F, et al.Biogenic silica and phosphorus accumulation in sediments as indices of eutrophication in the Laurentian Great Lakes[J].Hydrobiologia, 1986, 143:79-86.
[23] 程和琴, 李茂田.河流入海溶解硅通量的变化及其影响--以长江为例[J].长江流域资源与环境, 2001, 10(6):558-563.
[24] 沈志良.长江干流营养盐通量的初步研究[J].海洋与湖沼, 1997, 28(51:522-526.
[25] 李茂田, 程和琴.近50年来长江入海溶解硅通量变化及其影响[J].中国环境科学, 2001, 21(3):193-197.
[26] Karr J R.Chue E W.Sustaining living rivers[J].Hydrobiologia, 2000, 422:1-14.
[27] Petts G.Impounded rivers:Perspectives for ecological management[M].New York:John Wiley & Sons, 1984.
[28] Saito L, Johnson B M, Bartholow J, et al.Assessing ecosystem effects of reservoir operations using food web-energy transfer and water quality models[J].Ecosystems, 2001, 4:105-125.
[29] 孙冷.赤潮及其影响[J].灾害学, 1999, 14(2):51-53.
[30] 蒲新明, 吴玉霖.浮游植物的营养限制研究进展[J].海洋科学, 2000, 24(2):28-30.
[31] Wahby S D, Bishara N F.The effect of the River Nlie on Mediterranean water, before and after the construction of the High Dam at Aswan[J].Paris, 1979, 26-30.
[32] Turner R E, Rabalais N N.Changes in Mississippi River water quality this century-Implications for coastal food webs[J].Science, 1991, 41:140-147.
[33] Smetackek V.Bacteria and silicon cycling[J].Nature, 1999, 397:475-476.
[34] Conley J.Humborg C.Smedberg E.Past, present and future state of the biogeochemical-Si cycle in the Baltic Sea[J].Journal of Marine Systems, 2008, 73:338-346.