|
|
背角无齿蚌幼蚌对水体铜的吸收特征研究 |
刘凯1, 陈修报2, 刘洪波2, 姜涛2, 杨健1,2,* |
1. 南京农业大学无锡渔业学院, 江苏 无锡 214081
2. 中国水产科学研究院淡水渔业研究中心, 中国水产科学研究院长江中下游渔业生态环境评价和资源养护重点实验室, 江苏 无锡 214081 |
|
|
摘要 为了探究在不同浓度铜(Cu)暴露下背角无齿蚌(Anodonta woodiana)对水体Cu的吸收特征, 选定对Cu吸收能力更强的幼蚌作为实验对象, 依据Cu对幼蚌96 h-EC50和我国渔业水质标准(GB11607—89)中Cu限量设定5个浓度梯度2.0、1.0、0.1、0.01和0.005 mg·L–1, 进行24 h Cu暴露实验及水体Cu含量测定。结果显示: 随暴露浓度的升高, 幼蚌Cu吸收效率迅速升高, 最高值出现在2.0 mg·L–1暴露组为(0.69±0.11) μg/(g·h); 幼蚌Cu去除率总体呈现出降低趋势, 其中0.005 mg·L–1暴露组去除率最高为84.8%, 1.0 mg·L–1暴露组去除率最低为28.9%。综上所述, 背角无齿蚌幼蚌具有较强的Cu吸收能力, 表明其在淡水渔业水域环境Cu污染防控方面以及开发作为监测评价淡水渔业水域环境Cu污染的模式生物方面具有非常高的应用潜力。
|
|
|
[1] |
宋述望1, 欧阳明2, 刘骏1, 宋庆妮1, 方熊3, 栾丰刚1, 杨清培1, *. 毛竹扩张对杉木林土壤及杉木叶片氮磷化学计量特征影响[J]. 生态科学, 2024, 43(2): 1-. |
[2] |
江正俊, 苏敏*. 寄生入侵对循环竞争系统动态的影响[J]. 生态科学, 2024, 43(2): 8-. |
[3] |
黄良美1,*, 于晓燕1, 李丽和1, 韦锋1, 李嘉力1, 孙翔2. 广西红树林植物群落—海水—沉积物复合结构特征及其典型相关性耦合优化[J]. 生态科学, 2024, 43(2): 16-. |
[4] |
张萍1, *, 全佑铭1, 胡越然1, 许青2, 刘得辉1, 田少艺1, 陈念1. 东北地区湿地水鸟生态廊道的识别研究[J]. 生态科学, 2024, 43(2): 30-. |
[5] |
汪慧娟1, 徐姗楠2, 张文博3, 黄洪辉2, 齐占会2, 程琪1, 刘华雪1,*. 基于碳氮稳定同位素的珠江口南沙海域渔业生物群落营养结构研究[J]. 生态科学, 2024, 43(2): 42-. |
[6] |
舒洋1, 2, 向昌林2, 赵鹏武1, 2, 肖雷3, 李兵3, 田子金4, 周梅1, 2, *. 红花尔基樟子松人工林碳储量及碳层分配特征[J]. 生态科学, 2024, 43(2): 51-. |
[7] |
庞庆庄1,郭建超1, 崔盼盼2, 苏芳莉2, 3, *. 人类活动对辽河口海岸线和海岸带景观演变影响[J]. 生态科学, 2024, 43(2): 58-. |
[8] |
彭倩蓉1, 田义超1, 2, 3, *, 李春燕1, 梁楚1, 林谷梅1. 桂西南净生态系统生产力时空变化及其影响因素[J]. 生态科学, 2024, 43(2): 67-. |
[9] |
杨恒, 张丹, 李桂芳, 叶远行, 陈清飞, 王蓉*. 中国河湖岸带草本植物氮磷化学计量学及内稳性特征[J]. 生态科学, 2024, 43(2): 78-. |
[10] |
刘春艳, 阿拉腾图娅*. 苏尼特右旗1990—2019年景观格局变化研究[J]. 生态科学, 2024, 43(2): 87-. |
[11] |
欧芷阳1,2,*, 郑威1,2, 庞世龙1,2, 何峰1,2, 申文辉1,2, 谭一波1,2, 陈始贵1,2. 广西猫儿山优势木本植物叶功能性状关联性沿海拔梯度的变化规律[J]. 生态科学, 2024, 43(2): 95-. |
[12] |
刘维欢1, 2, 李晓刚2, 裴顺祥1, *. 降雨强度对不同海拔侧柏叶片滞纳大气颗粒物量的影响[J]. 生态科学, 2024, 43(2): 102-. |
[13] |
苏芳1, 齐乐萌2, 宋妮妮3, 胡玲2, 郭晓佳4, 薛冰5, *. 陕南秦巴山区农户生计资本对其环境意识的影响分析[J]. 生态科学, 2024, 43(2): 110-. |
[14] |
康丽婷1,2,3,4, 罗紫薇1,2,3, 胡希军1,2,3,*, 韦宝婧1,2,3, 周冬梅1,2,3. 基于GIS的漳州市松岭村乡村旅游适宜性评价及GAP分析[J]. 生态科学, 2024, 43(2): 123-. |
[15] |
许泰1, 2, 3, 4, 鄂崇毅2, 3, 4, *, 郑超1. 高寒露天矿区渣土基质粒度组成及养分特征[J]. 生态科学, 2024, 43(2): 132-. |
|
|
|
|