Sediments from ponds with and without algal blooms were sampled for a comparison study,and the vertical distribution of NH4+-N、NO3--N and PO43--P within the interstitial water were analyzed,as well as the microbial activity(FDA) and alkaline phosphatase (APA) in surface sediments.The results showed the concentration of NH4+-N increased from superficial waters to interstitial waters in both types of sediments,indicating a risk of NH4+-N releasing from interstitial waters.However,the concentrations of NO3--N and PO43--P decreased.The decreasing trend was observed for organic matter content(reflected by Loss-on-Ignition,LOI),FDA activity,and APA in the top 10 cm sediments.Correlation analyses showed that the concentration of NH4+-N in interstitial waters was positively correlated with the activities of FDA and APA in surface sediments(0-10cm),suggesting that the effect of microbe on N decomposition and mineralization was mainly influenced by the activities of APA and FDA in an anaerobic environment.
孙芳, 郑忠明*, 陆开宏, 翟海佳, 邵路路. 底泥微生物活性对蓝藻水华水柱及沉积物间隙水氮磷分布的影响[J]. , 2011, 30(3): 217-222.
SUN Fang, ZHENG Zhong-ming, LU Kai-hong, ZHAI Hai-jia, SHAO Lu-lu. Microbe activities in the sediment and its influences on N、P distribution of algae bloom water column and interstitial waters. , 2011, 30(3): 217-222.
[1] 高政权,孟春晓.淡水水体中蓝藻水华研究进展[J].安徽农业科学,2009,37(16):7597-7598.
[2] Geoffrey A C,Louise F M,James S M.Cyanobacterial toxins:risk management for health protection[J].Toxicology and Applied Pharmacology,2005,203:264-272.
[3] Bojan S,Gorazd K,Jana B.The role of Microcystins in heavy cyanobacterial bloom formation[J].Plankton Res,1998,20(6):691-708.
[4] 李宝,丁士明,范成新,钟继承,张路,尹洪斌,赵斌.滇池福保湾间隙水氮磷分布及其与底泥微生物和磷酸酶相互关系[J].湖泊科学,2008,20(4):420-427.
[5] 宋炜,袁丽娜,肖林,詹中,杨柳燕,蒋丽娟.太湖沉积物中解磷细菌分布及其与碱性磷酸酶活性的关系[J].环境科学,2007,28(10):2355-2360.
[6] 赵林多,朱亮,刘钢.河湖水体沉积物微生物群落结构特征分析研究[C].中国环境科学学会学术年会论文集,2009:780-786.
[7] Jones J G.Studies on freshwater bacteria:Association with algae and alkaline phosphatase activity[J].Ecology,1972,60:59-75.
[8] Reichardt W,Overbeck J,Steubing L.Free dissolved enzymes in lake waters[J].Nature,1967,216:1345-1347.
[9] Matavulj M,Gajin S,Gantar M.Phosphatase activity as an additional parameter of water condition estimate in some lakes of Vojvodina Province[J].Actaboilingosl,1984,21:53-62.
[10] Gary S.Sayler,Maria Puziss,Martin Silver.Alkaline phosphatase assay for freshwater sediments:application to perturbed sediment systems[J].Applied and environmental microbiology,1979,38(5):922-927.
[11] 金相灿,屠清瑛.湖泊富营养化调查规范[M].第二版.北京:中国环境科学出版社.1990:278-279.
[12] 贾建丽,陆瑾,刘莹.一种检测底泥中荧光素双醋酸酯活性的方法.中国专利:(CN 101706419 A),2010.
[13] Schnurer J,Rosswall T.Fluorescein diacetate hydrolysis as a measure of total microbial activity in soil and litter[J].Applied and Enviromental Microbiol,1982,43:1256-1261.
[14] 朱光伟.水动力作用与浅水湖泊磷的内源负荷研究[R].南京:中国科学院南京地理与湖泊研究所,2003.
[15] John Boyle.A comparison of two methods for estimating the organic matter content of sediments[J].Journal of Paleolimnology,2004,31:125-127.
[16] 雷衍之.养殖水环境化学实验[M].北京:中国农业出版社,2006:59-60.
[17] 国家环保局《水和废水监测分析方法》编委会.水与废水监测分析方法[M].4版.北京:中国环境科学出版社,2002:243-248.
[18] 王建军,范成新,张路.太湖底泥间隙水中金属离子分布特征及相关性[J].中国环境科学,2004,24(1):120-124.
[19] Zhou Yiyong.Vertical variations in kinetics of alkaline phosphatase and P specials in sediments of a shallow Chinese eutrophic lake(Lake Donghu)[J].Hydrobiologia,2001,450:90-98.
[20] 曹秀云,周易勇.浮游植物胞外磷酸酶在富营养化湖泊磷循环过程中的作用[D].中国科学院.2005:19-21.
[21] 章婷曦,王晓蓉,金相灿.太湖沉积物中碱性磷酸酶活力(APA)和磷形态的垂向特征及相关性[J].农业环境科学学报,2007,26(1):36-40.
[22] 李夜光,李中奎,耿亚红,胡鸿钧,殷春涛,殴阳叶新,桂建平.富营养化水体中N、P浓度对浮游植物生长繁殖速率和生物量的影响[J].生态学报,2006,26(2):317-325.
[23] 范成新,杨龙元,张路.太湖底泥及其间隙水中氮磷垂直分布及相互关系分析[J].湖泊科学,2000,12(4):359-366.
[24] Jansson M,Olsson H,Pettersson K.Phosphatases:origin,characteristic and function in lakes[J].Hydrobiologia,1988,170:157-175.
[25] 高光,高锡芸,秦伯强.太湖水体中碱性磷酸酶的作用阈值[J].湖泊科学,2000,12:353-358.
[26] 高光,朱广伟,秦伯强,王珂.太湖水体中碱性磷酸酶的活性及磷的矿化速率[J].中国科学D辑地球科学,2005,35:157-165.