[1] Oishi T, Nagai K, Harada Y, Naruse M, Ohtani M, Kawano E, Tamotsu S. Circadian rhythms in amphibians and reptiles: ecological implications[J]. Biological Rhythm Research, 2004, 35(1-2): 105-120.
[2] Morin P J. Community Ecology[M]. Malden: Blackwell Science, 1999.
[3] Richards S A. Temporal partitioning and aggression among foragers: modeling the effects of stochasticity and individual state[J]. Behavioral Ecology, 2002, 13(3): 427-438.
[4] Kronfeld-Schor N, Dayan T. Partitioning of time as an ecological resource[J]. Annual Review of Ecology, Evolution, and Systematics, 2003, 34: 153-181.
[5] Canavero A, Arim M. Clues supporting photoperiod as the main determinant of seasonal variation in amphibian activity[J]. Journal of Natural History, 2012, 43 (47–48): 2975-2984.
[6] DeCoursey P J. The behavioral ecology and evolution of biological timing systems // Dunlap J C, Loros J J, DeCoursey P J, eds. Chronobiology, Biological Timekeeping[M]. Sunderland: Sinauer Associates, 2004: 27-65.
[7] Nelson R J. An Introduction to Behavioral Endocrinology. 3rd ed[M]. Sunderland: Sinauer Associates, 2005.
[8] J?rgensen C B. Growth and reproduction // Feder M E, Burggren W W, eds. Environmental Physiology of the Amphibians[M]. Chicago: University of Chicago Press. 1992: 439-466.
[9] Stebbins R C, Cohen N W. A Natural History of Amphibians[M]. Princeton: Princeton University Press, 1997.
[10] Hartel T, Sas I, Pernetta A P, Geltsh I C. The reproductive dynamics of temperate amphibians: a review[J]. North-Western Journal of Zoology, 2007, 3(2): 127-145.
[11] Bradford D F. Temperature modulation in a high elevation amphibian, Rana muscosa[J]. Copeia, 1984, 1984(4), 966-976.
[12] Bradford D F. Incubation time and rate of embryonic development in amphibians: the influence of ovum size, temperature, and reproductive mode[J]. Physiological Zoology, 1990, 63(6): 1157-1180.
[13] Smith-Gill S J, Berven K A. Predicting amphibian metamorphosis[J]. American Naturalist, 1979, 113(4): 563-585.
[14] Wilson R S. Geographic variation in thermal sensitivity of jumping performance in the frog Limnodynastes peronii[J]. Journal of Experimental Biology, 2001, 204(Pt24): 4227-4236.
[15] Gomes F R, Bevier C R, Navas C A. Evironmental and physiological factors influence antipredator behavior in Scinax biemalis (Anura: Hylidae)[J]. Copeia, 2002, 2002(4): 994-1005.
[16] Wells K D. The Ecology and Behavior of Amphibians[M]. Chicago: Chicago University Press, 2007.
[17] Asimakopoulos B T, Sofianidou T S, Schneider H. Reproductive and calling behavior of the Greek frog Rana graeca (Amphibia: Anura) in Greece[J]. Zoologischer Anzeiger, 1990, 225: 133-143.
[18] Le Garff B. Relations between meteorological factors and laying in the common frog Rana temporaria L. (Amphibia, Anura, Ranidae), in west of France (Forest of Rennes)[J]. Bulletin de la Société zoologique de France, 1998, 123: 61-71.
[19] Reading C J. The effects of variation in climatic temperature (1980-2001) on breeding activity and tadpole stage duration in the common toad, Bufo bufo[J]. Science of the Total Environment, 2003, 310(1-3): 231-236.
[20] Beattie R C. The date of spawning in populations of the common frog (Rana temporation) from different altitudes in northern England[J]. Journal of Zoology (London), 1985, 205(1): 137-154.
[21] Terhivuo J. Phenology of spawning for the common frog (Rana temporaria L.) in Finland from 1846 to 1986[J]. Annales Zoologici Fennici, 1988, 25: 165-175.
[22] Beebee T J C. Amphibian breeding and climate[J]. Nature, 1995, 374: 219-220.
[23] Blaustein A R, Belden L K, Olson D H, Green D M, Root T L, Kiesecker J M. Amphibian breeding and climate change[J]. Conservation Biology, 2001, 15(6): 1804-1809.
[24] Gibbs J P, Breisch A R. Climate warming and calling phenology of frogs near Ithaca, New York, 1900-1999[J]. Conservation Biology, 2001, 15(4), 1175-1178.
[25] Tryjanowski P, Rybacki M, Sparks T. Changes in the first apawning dates of common frog and common toads in western Poland in 1978-2002[J]. Annales Zoologici Fennici, 2003, 40: 459-464.
[26] 费梁, 胡淑琴, 叶昌媛, 黄永昭. 中国动物志. 两栖纲(下卷):无尾目蛙科[M]. 北京:科学出版社, 2009. 1310-1319.
[27] Bennett A F. Thermal dependence of locomotor capacity[J]. American Journal of Physiology, 1990, 259(2): 253-258.
[28] Angilletta M J Jr, Huey R B, Frazier M R. Thermodynamic Effects on Organismal Performance: Is Hotter Better[J]. Physiological and Biochemical Zoology, 2010, 83(2): 197-206.
[29] 施林强, 赵丽华, 马小浩, 马小梅. 泽陆蛙和饰纹姬蛙蝌蚪不同热驯化下选择体温和热耐受性[J]. 生态学报, 2012, 32(2):465-471.
[30] 樊晓丽, 雷焕宗, 林植华. 虎纹蛙选择体温和热耐受性在个体发育过程中的变化[J]. 生态学报, 2012, 32(17):5574-5580.
[31] Wahl M. Untersuchungen zur Bio-Akustik der Wasserfrosches Rana esculaenta (L.)[J]. Oecologia(Berl.), 1969, 3: 14-55.
[32] 张艳华, 赵彦禹, 冯照军, 路爱平. 中国林蛙继饥饿后的补偿生长研究[J]. 四川动物, 2007, 26(2):305-307.
[33] Griffiths R A. Diel profile of behaviour in the smooth newt, Triturus vulgaris (L.): an analysis of environmental cues and endogenous timing[J]. Animal Behaviour, 1985, 33(2): 573-582.
[34] 张晋东, 傅之屏, 李玉杰, 戴强, 王波, 王跃招. 若尔盖湿地高原林蛙和岷山蟾蜍的日活动节律[J]. 四川动物, 2007, 26(2):312-315.
[35] Obert H-J. The dependence of calling activity in Rana esculenta Linné 1758 and Rana ridibunda Pallas 1771 upon exogenous factors (Ranidae, Anura)[J]. Oecologia, 1975, 18(4): 317-328. |