[1] Zelles L. Fatty acid patterns of phospholipids and lipopolysaccharides in the characterization of microbial communities in soil: a review[J]. Biology and Fertility of Soil, 1999, 29(2): 1l1-129.
[2] Panikov N S. Understanding and prediction of soil microbial community dynamics under global change[J]. Applied Soil Ecology, 1999, 11(2-3): 161-176.
[3] Dias-Ravina M, Acea M J, Carbanas T. Microbial biomass and its contribution to nutrient concentration in forest soils[J]. Soil Biology & Biochemistry, 1993, 25(1): 25-31.
[4] 胡亚林, 汪思龙, 黄宇, 于小军. 凋落物化学组成对土壤微生物学性状及土壤酶活性的影响[J]. 生态学报, 2005, 25(10): 2662-2668.
[5] 周桔, 雷霆. 土壤微生物多样性影响因素及研究方法的现状与展望[J]. 生物多样性, 2007, 15(3): 306-311.
[6] 鲁如坤主编. 2000. 土壤农业化学分析手册[M]. 北京: 中国农业科技出版社.
[7] Brookes P C, Landman A, Pruden G, Jenkinson, D S. Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil[J]. Soil Biology & Biochemistry, 1985, 17 (6): 837-842.
[8] Vance E D, Brookes P C, Jenkinson D S. An extraction method for measuring soil microbial biomass C[J]. Soil Biology & Biochemistry., 1987, 19 (6): 703-707.
[9] Larsen K S, Jonasson S, Michelsen A. Repeated freeze-thaw cycles and their effects on biological processes in two arctic ecosystem types[J]. Applied Soil Ecology, 2002, 21(3): 187-195.
[10] Sutinen R, Hänninen P, Venäläinen A. Effect of mild winter events on soil water content beneath snowpack[J]. Cold Regions Science and Technology, 2008, 51(1): 56-67.
[11] Cline DW. Snow surface energy exchanges and snowmelt at a continental, midlatitude alpine site[J]. Water Reseources Research, 1997, 33(4): 689-701.
[12] Williams M W, Brooks P D, Seastedt T. Nitrogen and carbon soil dynamics in response to climate change in a high elevation ecosystem in the Rocky Mountains, U.S.A[J]. Arctic Antarctic and Alpine Research, 1998, 30(1): 26-30.
[13] Boike J, Roth K, Overduin P P. Thermal and hydrologic dynamics of the active layer at a continuous permafrost site (Taymyr Peninsula, Siberia)[J]. Water Resources Research, 1998, 34 (3): 355-363.
[14] Gray D M, Toth B, Zhao L, et al. Estimating areal snowmelt infiltration into frozen soils[J]. Hydrological Processes, 2001, 15 (16): 3095-3111.
[15] Hooker T D, Stark J M. Soil C and N cycling in three semiarid vegetation types: Response to an in situ pulse of plant detritus[J]. Soil Biology and Biochemistry, 2008, 40: 2678-2685.
[16] Sayer E J, Powers J S, Tanner E V J. Increased litter fall in tropical forests boosts the transfer of soil CO2 to the atmosphere[J]. Plosone, 2007, 2(12): 1-6.
[17] Brant J B, Sulzman E W, Myrold D D. Microbial community utilization of added carbon substrates in response to long term carbon input manipulation[J]. Soil Biology and Biochemistry, 2006, 38: 2219-2232.
[18] Jonasson S, Castro J, Michelsen A. Litter, warming and plants affect respiration and allocation of soil microbial and plant C, N and P in arctic mesocosms[J]. Soil Biology and Biochemistry, 2004, 36: 1129-1139.
[19] Li Y Q, Xu M, Sun O J, Cui W C. Effects of root and litter exclusion on soil CO2 efflux and microbial biomass in wet tropical forests[J]. Soil Biology and Biochemistry, 2004, 36: 2111-2114
[20] Nadelhoffer K J, Boone R D, Bowden R D. The DIRT experiment: litter and root influences on forest soil organic matter stocks and function. In: Foster D and Aber J (Eds). Forests in Time: the environmental consequences of 1000 years of Change in New England. New Haven, CT: Yale University Press. 2004, 300-315.
[21] Paul E A, Clark F E. 1996. Soil Microbiology and Biochemistry [M], 2nd edn. San Diego: Academic Press.
[22] Rinnana R, Michelsen A, Baath E, Jonasson S. Mineralization and carbon turnover in subarctic heath soil as affected by warming and additional litter[J]. Soil Biology and Biochemistry, 2007, 39(12): 3014-3023.
[23] Liu L, Wu Y, Wu N. Effects of freezing and freeze-thaw cycles on soil microbial biomass and nutrient dynamics under different snow gradients in an alpine meadow (Tibetan Plateau)[J]. Polish Journal of Ecology, 2010, 58(4): 717-728. |