[1] 陈晹,陈骏,刘连文,季峻峰,等.2003.最近13万年来黄土高原Rb/Sr记录与夏季风时空变迁[J].中国科学(D辑),33(6):513-519.
[2] 李承森,王宇飞,孙启高.2001.定量分析第三纪以来环境变化的新方法——特有种气候分析法[J].植物学报,43:217-220.
[3] 李承森,王宇飞,孙启高.2003.植物对环境的响应一定量重建古气候的研究进展[J].植物学通报,20(4):430-438.
[4] 郑凤英,彭少麟,赵平.2001.两种山黄麻属植物在近一世纪里气孔密度和潜在水分利用率的变化[J].植物生态学报,25(4):405-409.
[5] 郑淑霞,常朝阳,上官周平.2004.辽东栎叶片气孔特征参数的时空变异[J].应用与环境生物学报,10(4):412-415.
[6] 郑淑霞,上官周平.2004.近一世纪黄土高原区植物气孔密度变化规律研究[J].生态学报,24(11):2457-2464.
[7] Beerling D J, Kelly C K, Salisbury E J. 1997. Stomatal density responses of temperate woodland plants over the past seven decades of CO2 increase:a comparison of Salisbury (1927) with contemporary data[J]. America Journal of Botany, 84:1572-1583.
[8] Beerling D J, Royer D L. 2002. Reading a CO2 signal from fossil stomata[J]. New Phytologist, 153:387-397.
[9] Chen L Q, Li C S, Chaloner W G, et al. 2001. Assessing the potential for the stomatal characters of extant and fossil Ginkgo leaves to signal atmospheric CO2 change[J].American Journal of Botany, 88:1309-1315.
[10] Fernandez M D, Pieters A, Donoso C, et al. 1998. An effect of a natural source of very high CO2 concentration on the leaf gas exchange, xulem water potential and stomatal characteristics of plants of Spatiphylum canni folium and Bauhinia multieruvia[J]. New Phytologist, 138:689-697.
[11] Gray J E, Holroyd G H, Vanderlee F M, et al. 2000. The HICsignaling pathway links CO2 perception to stomatal development[J]. Nature, 408:713-716.
[12] He X Q, Lin Y H, Lin J X, et al. 1998. Relationship between stomatal density and the change of atmospheric CO2concentrations[J]. Chinese Science Bulletin, 43(11):928-930.
[13] Kenrick P, Crane P R. 1997. The origin and early diversification of land plants:a cladistic study[M].Washington D C:Smithsonian Institution Press.
[14] Kouwenberg L L R, McElwain J C, Kurschner W M, et al.2003. Stomatal frequency adjustment of four conifer species to historical changes in atmospheric CO2[J]. American Journal of Botany, 90(4):610-619.
[15] Lake J A, Quick W P, Beerling D J, et al. 2001. Plant development:Signals from mature to new leaves[J]. Nature,411:154.
[16] Mcclaran M P, Umlauf M. 2000. Desert garland dynamics estimated from carbon isotopes in grass phytoliths and soil organic matter[J]. Journal of Vegetation Science, 11:71-76.
[17] Michel M. 2004. Holocene climate variability as reflected by mid-European lake-level fluctuations and its probable impact on prehistoric human settlements[J]. Quaternary International, 113:65-79.
[18] Mosbrugger V, 1997. The coexistence approach:a method for quantitative reconstruction of Tertiary terrestrial paleoclimate data using plant fossils[J]. Palaeogeography,Palaeoclimatology, Palaeoecology, 134:61-86.
[19] Paul A K, Peter T S, Grissino-Mayer H D. 2004. Occurrence of sustained droughts in the interior Pacific Northwest (A.D.1733-1980) inferred from tree-ring data[J]. Journal of Climate, 17:140-150.
[20] Raffalli-Delerce G, Masson-Delmotte V, Dupouey J L, et al.2004. Reconstruction of summer droughts using tree-ring cellulose isotopes:a calibration study with living oaks from Brittany (western France)[J]. Tellus. Series B, Chemical and Physical Meteorology, 56B:160-174.
[21] Raven J A, Ramsden H J. 1989. Similarity of stomatal index in the C4 plant Salsola kali L. in material collected in 1843and in 1987:relevance to changes in atmospheric CO2 content[J]. Transactions of the Botanical Society Edinburgh, 45:223-233.
[22] Retallack G J. 2001. A 300-million-year record of atmospheric carbon dioxide from fossil plant cuticles[J].Nature, 411:287-290.
[23] Roth-Nebelsick A, Utescher T, Mosbrugger V, et al. 2004.Changes in atmospheric CO2 concentrations and climate from the Late Eoceneto Early Miocene:palaeobotanical reconstruction based on fossil floras from Saxony, Germany[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,205:43-67.
[24] Royer D L, 2001. Stomatal density and stomatal index as indicators of paleoatmospheric CO2 concentration[J]. Rev.Palaeobotany and Palynology, 114:1-28.
[25] Sun B N, Dilcher D L, Beerling D J, et al. 2003. Variation in Ginkgo biloba L. leaf characters across a climatic gradient in China[J]. PNAS, 100:7141-7146
[26] Thompson L G, Yao T, Mosley-Thompson E, et al. 2000. Ahigh-resolution millennial record of the south Asian monsoon from himalayan ice cores[J]. Science, 289:1916-1920.
[27] Wagner F, Aaby B, Visscher H. 2002. Rapid atmospheric CO2changes associated with the 8,200-years-BP cooling event[J].PNAS, 99:12011-12014.
[28] Wiemann M C, Wheeler E A, Manchester S R, et al. 1998.Dicotyledonous wood anatomical characters as predictors of climate[J]. Palaeogeography, Palaeoclimatology,Palaeoecology, 139:83-100.
[29] Wolfe J A. 1995. Paleoclimatic estimates from Tertiary leaf assemblages[J]. Annual Review of Earth Planet Science, 23:119-142.
[30] Woodward F I, 1987. Stomatal numbers are sensitive to increases in CO2 from pre-industrial levels[J]. Nature, 327:617-618. |