1. Biology Department, Holy Cross College, Worcester, MA 01610 USA; 2. 广东海洋大学, 湛江, 524088; 3. University of South Florida, St.Petersburg USA 33411
Lindeman’s trophic dynamic aspect of ecology and its significance in current ecological research
William V. Sobczack1,2, Binhe Gu3
1. Biology Department, Holy Cross College, Worcester, MA 01610 USA; 2. Guangdong Ocean University, Zhanjiang, China 524088; 3. College of Arts and Science, University of South Florida, USA 33411
Trophic dynamic aspect of ecology by Raymond Lindeman provided a novel conceptual model for studying energy flow in aquatic ecosystems. Lindeman's Ecology manuscript is now considered foundational work in the histories of ecology and limnology and seminal work in ecosystem ecology. This work was one of the first papers to implement Arthur Tansley's newly proposed ecosystem concept in a quantitative manner and was groundbreaking in several ways. The work's most enduring contribution is that it provided a common currency (organic matter or energy flow) for studying interactions among trophic levels and for comparing disparate aquatic ecosystems,thus establishing a theoretical orientation in ecology. Today,Lindeman's model is still instrumental in ecological research.
William V. Sobczack1,2, 古滨河3. 林德曼的营养动力论及其在当前生态学研究中的意义[J]. , 2007, 26(1): 84-87.
William V. Sobczack1,2, Binhe Gu3. Lindeman’s trophic dynamic aspect of ecology and its significance in current ecological research. , 2007, 26(1): 84-87.
[1] Cook R E.1977.Raymond Lindeman and the trophicdynamic concept in Ecology.Science 198:22-26.
[2] Real L A,and Brown J H.1991.Foundations of Ecology:Classic Papers with Commentaries.The University of Chicago Press.
[3] Wetzel R G.2001.Limnology:Lake and River Ecosystems.Academic Press.
[4] Golley F B.1993.A History of the Ecosystem Concept in Ecology.Yale University Press.
[5] Lindeman R E.1942.Trophic·dynamic aspect of ecology.Ecology 23:399-418.
[6] Barret G W,and Mabry K E.2002.Twentieth-centuryclassic books and benchmark publications in Biology.BioScience 52:282-285.
[7] Pomeroy L R.1974.The ocean's food web:A changingp aradigm.BioScience 24:499-504.
[8] Wetzel R G.1983.Limnology.Saunders Press.
[9] Vannote R L,Minshall G W,Cummins K W,Sedell J R,and Cushing C E.1980.The river continuum concept.Can.J.Fish.Aquat.Sci.37:130-137.
[10] Pace,M.L.,J.J.Cole,S.R.Carpenter,J.F.Kitchell,J.R.Hodgson,M.C.Vall de Bogert,D.L.Bade,E.S.Kritzberg.and D.Bastviken.2004.Whole-lake carbon-13additions reveal terrestrial support of aquatic food webs.Nature 427:240-243.
[11] Hall,R.O.,J.B.Wallace,and S.L.Eggert.2000.Organic matter flow in stream food webs with reduced detrital resource base.Ecology 81:3445-3463.
[12] Eggert,S.L.and J.B.Wallace.2003.Litter breakdown and invertebrate detritivores in a resource-depleted Appalachian stream.Arch.Hydrobiol.156:315-338.
[13] Bastviken,D.,J.Ejleasson,I.Sundh,and L.Tranvik.2003.Methane as a source of carbon and energy for lake pelaglc food webs.Ecology 84:969-981.
[14] Frankignoulle,M.,G.Abril,A.Borges,I.Bourge,C.Canon,B.Delille,E.Libert,and J.Theate.1998.Carbon dioxide emission from European estuaries.Nature 282:434-436.
[15] Cole,J.J.,and N.A.Caraco.2001.Carbon in catchments:connecting terrestrial carbon losses with aquatic metabolism.J.Mar.Freshw.Res.52:101-110.
[16] Thorp,J.H.,and M.D.Delong.2002.Dominance of autochthonous autotrophic carbon in food webs of heterotrophic rivers? Oikos 96:543-550.
[17] Teal,J.M.1962.Energy flow in the salt marsh ecosystem of Georgia.Ecology 23:614-624.
[18] Pauly,D.,V.Christensen,S.Guenette,T.J.Pitcher,U.R.Sumaila.C.J.Waiters,R.Watson,and D.Zeller.2002.Towards sustainability in world fisheries.Nature 418:689-695
[19] Jacobs,K.L.,S.N.Luoma,and K.A.Taylor.2003.CALFED:An experiment in science and decision making.Enviroument 45:30-41.
[20] Jassby,A.D.,J.E.Cloern,and B.E.Cole.2002.Annual primary production:Pattems and mechanisms of change in a nutrient-rich tidal ecosystem.Limnol.Oceanogr.47:698-712.
[21] Lopez,C.B.,J.E.Cloem,T.S.Schraga,A.J.Little,L.V.Lucas.J.K.Thompson,and J.R.Burau.2005.Ecological values of shallow-water habitats:implications for restoration of disturbed ecosystems.Ecosystems(in press).
[22] Sobczak,W.V.,J E.Cloern,A.D.Jassby,B.E.Cole,T.S.Schraga,and A.Amsberg.2005.Detritus fuels metabolism but not metazoan food webs in San Francisco Estuary's freshwater delta.Estuaries 28:124-137.
[23] Likens,G.E.1998.Limitations to intellectual progress in ecosystem science.In:M.L.Pace.and P.M.Groffman (Eds.).Successes,Limitations,and Frontiers in Ecosystem Science.Springer.
[24] Sobczak,W.V.,J.E.Cloern,A.D.Jassby,and A.B M(u)ller-Solger.2002.Bioavailability of organic matter in a highly disturbed estuary:The role of detrital and algal resources.Proceedings of the National Academy of Sciences 99:8101-8105.
[25] M(u)ller-Solger,A.B.,A.D.Jassby,and D.C.Miiller-Navarra.2002.Nutritional quality of food resources for zooplankton (Daphnia) in a tidal freshwater system(Sacramento-San Joaquin River Dera,USA).Limnol.Oceanogr.47:1468-1476.
[26] Sommer,T.R.,W.C.Harwell,A.B.Mueller-Solger,2004.Effects of flow variation on channel and floodplain biota and habitats of the Sacramento River,Califomia,USA.Aquatic Conservation of Marine and Freshwater Ecosystems 14:247-261.
[27] Findlay,S.E.G.,and R.L.Sinsabaugh.2003.Aquatic Ecosystems:Interactivity of Dissolved Organic Matter.Academic Press.
[28] Cloem,J.E.2001.Our evolving conceptual model of the coastal eutrophication problem.Mar.Ecol.Prog.Ser.210:223-253.