Fejervarya limnocharis was used as a model animal, and its activities were investigated in the farmland of Tuchang Village of Bishan Town, Rui’an Wenzhou of Zhejiang Province for one month, so as to study the influence of post-hibernation and temperature on the activity and body size of F. limnocharis. Our results are as follows. (1) No significant difference in the body size of F. limnocharis was found at different times in a month. Air temperature was not related to body size, but it showed positive correlation to the active numbers of F. limnocharis in the field. (2) Investigation on the number of active F. limnocharis for 4 days showed that there was significant difference between the activity in the forenoon and afternoon. The number of active F. limnocharis in the forenoon was much lower than that in the afternoon, while body size of F. limnocharis was not significantly different between the forenoon and afternoon. Air temperature was not significantly related to body size, but positively correlated to the number of active F. limnocharis. (3) We analyzed the data of active number between long-term and short-term field investigation using single factor analysis of covariance with air temperature as the covariate, and found that the linear regressions of the two group data showed parallelism, while the intercept differences were significant. Therefore, we conclude that air temperature is a very important ecological factor which affects the number of active F. limnocharis during post-hibernation in the field.
魏洁, 曾夏招, 徐安利, 范海红, 樊晓丽, 丁国骅, 林植华*. 气温对出蛰期泽陆蛙(Fejervarya limnocharis)日间活动的影响[J]. , 2013, 32(1): 104-109.
WEI Jie, ZENG Xia-zhao, Xu An-li, FAN Hai-hong, Fan Xiao-li, DING Gu-wo, LIN Zhi-hua*. The effect of air temperature on diurnal activity of Fejervarya limnocharis during post-hibernation. , 2013, 32(1): 104-109.
[1] Oishi T, Nagai K, Harada Y, Naruse M, Ohtani M, Kawano E, Tamotsu S. Circadian rhythms in amphibians and reptiles: ecological implications[J]. Biological Rhythm Research, 2004, 35(1-2): 105-120.
[2] Morin P J. Community Ecology[M]. Malden: Blackwell Science, 1999.
[3] Richards S A. Temporal partitioning and aggression among foragers: modeling the effects of stochasticity and individual state[J]. Behavioral Ecology, 2002, 13(3): 427-438.
[4] Kronfeld-Schor N, Dayan T. Partitioning of time as an ecological resource[J]. Annual Review of Ecology, Evolution, and Systematics, 2003, 34: 153-181.
[5] Canavero A, Arim M. Clues supporting photoperiod as the main determinant of seasonal variation in amphibian activity[J]. Journal of Natural History, 2012, 43 (47–48): 2975-2984.
[6] DeCoursey P J. The behavioral ecology and evolution of biological timing systems // Dunlap J C, Loros J J, DeCoursey P J, eds. Chronobiology, Biological Timekeeping[M]. Sunderland: Sinauer Associates, 2004: 27-65.
[7] Nelson R J. An Introduction to Behavioral Endocrinology. 3rd ed[M]. Sunderland: Sinauer Associates, 2005.
[8] J?rgensen C B. Growth and reproduction // Feder M E, Burggren W W, eds. Environmental Physiology of the Amphibians[M]. Chicago: University of Chicago Press. 1992: 439-466.
[9] Stebbins R C, Cohen N W. A Natural History of Amphibians[M]. Princeton: Princeton University Press, 1997.
[10] Hartel T, Sas I, Pernetta A P, Geltsh I C. The reproductive dynamics of temperate amphibians: a review[J]. North-Western Journal of Zoology, 2007, 3(2): 127-145.
[11] Bradford D F. Temperature modulation in a high elevation amphibian, Rana muscosa[J]. Copeia, 1984, 1984(4), 966-976.
[12] Bradford D F. Incubation time and rate of embryonic development in amphibians: the influence of ovum size, temperature, and reproductive mode[J]. Physiological Zoology, 1990, 63(6): 1157-1180.
[13] Smith-Gill S J, Berven K A. Predicting amphibian metamorphosis[J]. American Naturalist, 1979, 113(4): 563-585.
[14] Wilson R S. Geographic variation in thermal sensitivity of jumping performance in the frog Limnodynastes peronii[J]. Journal of Experimental Biology, 2001, 204(Pt24): 4227-4236.
[15] Gomes F R, Bevier C R, Navas C A. Evironmental and physiological factors influence antipredator behavior in Scinax biemalis (Anura: Hylidae)[J]. Copeia, 2002, 2002(4): 994-1005.
[16] Wells K D. The Ecology and Behavior of Amphibians[M]. Chicago: Chicago University Press, 2007.
[17] Asimakopoulos B T, Sofianidou T S, Schneider H. Reproductive and calling behavior of the Greek frog Rana graeca (Amphibia: Anura) in Greece[J]. Zoologischer Anzeiger, 1990, 225: 133-143.
[18] Le Garff B. Relations between meteorological factors and laying in the common frog Rana temporaria L. (Amphibia, Anura, Ranidae), in west of France (Forest of Rennes)[J]. Bulletin de la Société zoologique de France, 1998, 123: 61-71.
[19] Reading C J. The effects of variation in climatic temperature (1980-2001) on breeding activity and tadpole stage duration in the common toad, Bufo bufo[J]. Science of the Total Environment, 2003, 310(1-3): 231-236.
[20] Beattie R C. The date of spawning in populations of the common frog (Rana temporation) from different altitudes in northern England[J]. Journal of Zoology (London), 1985, 205(1): 137-154.
[21] Terhivuo J. Phenology of spawning for the common frog (Rana temporaria L.) in Finland from 1846 to 1986[J]. Annales Zoologici Fennici, 1988, 25: 165-175.
[22] Beebee T J C. Amphibian breeding and climate[J]. Nature, 1995, 374: 219-220.
[23] Blaustein A R, Belden L K, Olson D H, Green D M, Root T L, Kiesecker J M. Amphibian breeding and climate change[J]. Conservation Biology, 2001, 15(6): 1804-1809.
[24] Gibbs J P, Breisch A R. Climate warming and calling phenology of frogs near Ithaca, New York, 1900-1999[J]. Conservation Biology, 2001, 15(4), 1175-1178.
[25] Tryjanowski P, Rybacki M, Sparks T. Changes in the first apawning dates of common frog and common toads in western Poland in 1978-2002[J]. Annales Zoologici Fennici, 2003, 40: 459-464.
[26] 费梁, 胡淑琴, 叶昌媛, 黄永昭. 中国动物志. 两栖纲(下卷):无尾目蛙科[M]. 北京:科学出版社, 2009. 1310-1319.
[27] Bennett A F. Thermal dependence of locomotor capacity[J]. American Journal of Physiology, 1990, 259(2): 253-258.
[28] Angilletta M J Jr, Huey R B, Frazier M R. Thermodynamic Effects on Organismal Performance: Is Hotter Better[J]. Physiological and Biochemical Zoology, 2010, 83(2): 197-206.
[29] 施林强, 赵丽华, 马小浩, 马小梅. 泽陆蛙和饰纹姬蛙蝌蚪不同热驯化下选择体温和热耐受性[J]. 生态学报, 2012, 32(2):465-471.
[30] 樊晓丽, 雷焕宗, 林植华. 虎纹蛙选择体温和热耐受性在个体发育过程中的变化[J]. 生态学报, 2012, 32(17):5574-5580.
[31] Wahl M. Untersuchungen zur Bio-Akustik der Wasserfrosches Rana esculaenta (L.)[J]. Oecologia(Berl.), 1969, 3: 14-55.
[32] 张艳华, 赵彦禹, 冯照军, 路爱平. 中国林蛙继饥饿后的补偿生长研究[J]. 四川动物, 2007, 26(2):305-307.
[33] Griffiths R A. Diel profile of behaviour in the smooth newt, Triturus vulgaris (L.): an analysis of environmental cues and endogenous timing[J]. Animal Behaviour, 1985, 33(2): 573-582.
[34] 张晋东, 傅之屏, 李玉杰, 戴强, 王波, 王跃招. 若尔盖湿地高原林蛙和岷山蟾蜍的日活动节律[J]. 四川动物, 2007, 26(2):312-315.
[35] Obert H-J. The dependence of calling activity in Rana esculenta Linné 1758 and Rana ridibunda Pallas 1771 upon exogenous factors (Ranidae, Anura)[J]. Oecologia, 1975, 18(4): 317-328.