Extraction of land use/cover information based on C5.0 Algorithm in Qiantang River drainage area
GAO Yu-rong1,2, XU Hong-wei2, DING Xiao-dong3,4
1. Hangzhou Academy of Environmental Science, Hangzhou 310014, China; 2. Institute of Agricultural Remote Sensing and Information Technology Application, Zhejiang University, Hangzhou 310029, China; 3. Institute of Remote Sensing and Earth Sciences, College of Science, Hangzhou Normal University, Hangzhou 311121, China; 4. Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, Hangzhou 311121, China
Based on the 348 km2 experimental area located at the middle part of Qiantang River,the research integrated NDVI,texture features, elevation and slope features generated from DEM and other spatial data,extended SPOT5 image's spectrum features,and automatically extracted land-use information by C5.0 Algorithm.Comparing to the maximum likelihood classification,the result showed the validity of training samples and usage of assistant feature data could eliminate the disturbing information.When the number of sample points increased, the accuracy of classification could be improved subsequently.The rules were easy to understand while the accuracy was the same,when decision tree changed to the decision rules.By using C5.0 Algorithm,the total accuracy could reach 94.68%,which was 7.37% higher than maximum likelihood classification.C5.0 Algorithm achieved high accuracy classification,which is one of the quick and accurate methods to extract land-use information on Qiantang River drainage area.
高玉蓉1,2, 许红卫2, 丁晓东3,4. 基于C5.0的钱塘江流域地区土地利用/覆被信息提取研究[J]. , 2012, 31(5): 481-487.
GAO Yu-rong1,2, XU Hong-wei2, DING Xiao-dong3,4. Extraction of land use/cover information based on C5.0 Algorithm in Qiantang River drainage area. , 2012, 31(5): 481-487.
[1] 贾树海,韩志根,吕默楠,王晶,谢东祺. 基于决策树的辽宁省北部沙漠化信息提取研究[J]. 生态环境学报, 2011, 20(1):13-18.
[2] Defries R S, Hansen M C, Townshend J R G, Sohlberg R. Global land cover classifications at 8 km spatial resolution: The use of training data derived from landsat imagery in decision tree classifiers[J]. International Journal of Remote Sensing, 1998, 19(16): 3141-3168.
[3] Friedl M A, Strahler C E, Strabler A H. Maximizing land cover classification accuracies produced by decision trees at continental to global scales[J]. IEEE Transactions on Geoscience Remote Sensing, 1997, 37(2): 969-977.
[4] 毛克彪,覃志豪,李昕,李海涛. 空间数据挖掘与GIS集成及应用研究[J]. 测绘与空间地理信息, 2004, 1(27) :14-17.
[5] Friedl M A, Brodley C E. Decision tree classification of land cover from remotely sensed data[J]. Remote Sensing of Environment, 1997, 61:399-409.
[6] 刘勇洪,牛铮,王长耀. 基于MODIS数据的决策树分类方法研究与应用[J]. 遥感学报, 2005, 9(4):405-412.
[7] 吴见,彭道黎. 基于TM影像的多伦县土地利用信息提取[J]. 东北林业大学学报, 2010, 38(10):88-94.
[8] 黄添强,郭躬德,卓飞豹. 基于多分类器的复合决策树在遥感分类中的应用[J]. 青岛大学学报:工程技术版, 2007, 22(4):60-64.
[9] 张爽,刘雪华,靳强. 决策树学习方法应用于生境景观分类[J]. 清华大学学报:自然科学版, 2006, 46(9):1564-1567.
[10] 齐红超,祁元,徐瑱. 基于C5.0决策树算法的西北干旱区土地覆盖分类研究—以甘肃省武威市为例[J]. 遥感技术与应用, 2009, 24(5):648-653.
[11] 巩固,吕俊怀,黄永青,郝国生. 有效改进C5.0算法的方法[J]. 计算机工程与设计, 2009, 30(22):5197-5203.
[12] 朱梅红,石勇,李爱华,张东玲. 三种分类算法偏差-方差结构的比较:MCLP,LDA和C5.0[J]. 中国科学院研究生院学报, 2009, 26(4):443-450.
[13] Derek R P, Steven E F. Image texture processing and data integration for surface pattern discrimination[J]. Photogrammetric Engineering and Remote Sensing, 1991, 57(4):413-420.
[14] 游浩辰,许章华,刘健,余坤勇,张新珠. GIS支持下的山区遥感影像决策树分类研究[J]. 北京联合大学学报:自然科学版, 2011, 25(1):34-45.
[15] Quinlan J R. Induction of decision trees[J]. Machine Learning, 1986, 1:81-106.
[16] Quinlan J R. C4.5: Programs for Machine Learning[M]. San Mateo, CA: Morgan Kaufmann, 1993.
[17] Lewis F, Douglas F. Identifying Markov Blankets with Decision Tree Induction[C]. Proceedings of the Third IEEE International Conference on Data Mining(ICDM03), 2003.