[1] 孔垂华,黄寿山,胡飞.2001.胜红蓟化感作用研究V.挥发油对真菌、昆虫和植物的生物活性及其化学成份[J].生态学报,21(4):583-587.
[2] 孔垂华,徐涛,胡飞,等.2000.环境胁迫下植物的化感作用及其诱导机制[J].生态学报,20(5):849-855.
[3] 孔垂华.2001.植物化感作用及其应用[M].北京:中国农业出版社,11-13:58-61.
[4] 李振基,陈小麟,郑海雷.2004.生态学(第二版)[M].北京:科学出版社,288-290.
[5] 凌冰,张茂新,孔垂华,等.2003.飞机草挥发油的化学组成及其对植物、真菌和昆虫生长的影响[J].应用生态学报,14(5):744-746.
[6] 王鹏,梁文举,孔垂华,等.2004.外来杂草入侵的化学机制[J].应用生态学报,15(4):707-711.
[7] 徐汝梅,叶万辉.2003.生物入侵:理论与实践[M].北京:科学出版社,1-10.
[8] 周志红.1999.植物化感作用的研究方法及影响因素[J].生态科学,18(1):35-38.
[9] 祝心如,王威,赵国镇,等.1997.三裂叶豚草(Ambrosia trifiaa)对大豆根系生长及其结瘤的影响[J].生态学报,17(4):16-21.
[10] Bais H P, Walker P S, Stermitz F R, et al. 2002.Enantiomeric-dependent phytotoxic and antimicrobial activity of (±)-catechin. A rhizosecreted racemic mixture from Spotted Knapweed[J]. Plant Physiology, 128:1173-1179.
[11] Bais H P, Vepachedu R, Gilroy S, et al. 2003. Allelopathy and exotic plant invasion, from molecules and genes to species interactions[J]. Science, 301:1377-1381.
[12] Blossey B, Notzold R. 1995. Evolution of increased competitive ability in invasive nonindigenous plants: a hypothesis[J].Journal of Ecology, 83: 887-889.
[13] Bryant J P, Provenza F D, Pastor J, et al. 1991. Interactions between woody plants and browsing mammals medieted by secondary metabolites[J]. Annual Review of Ecology and Systematics, 22:431-446.
[14] Callaway R M, Aschehoug E T. 2000. Invasive plants versus their new and old neighbors: a mechanism for exotic invasion[J].Science, 290: 521-523.
[15] Callaway R M, Deluca T H, Belliveau W M. 1999.Biological-control herbivores may increase competitive ability of the noxious weed Centaurea maculosa[J]. Ecology, 80(4):1196-1201.
[16] D'Antonio C M, Kark S. 2002. Impacts and extent of biotic invasions in terrestrial ecosystems[J]. Trends in Ecology and Evolution, 17(5): 202-204.
[17] Davis M A, Grime J P, Thompson K. 2000. Fluctuating resources in plant communities: a general theory of invisibility[J]. Journal of Ecology, 88: 528-534.
[18] Fitter A. 2003. Making allelopathy respectable[J]. Science, 301:1377-1380.
[19] Gentle C B, Duggin J A. 1997. Allelopathy as a competitive strategy in persistent thickets of Lantana camara L. in three Australian forest communities[J]. Plant Ecology, 132: 85-95.
[20] Ghisalberti E L. 2000. Lantana camara L. Verbenaceae[J].Fitoterapia, 71: 467-486.
[21] Glendinning J I, Domdom S, Long E. 2001. Selective adaptation to noxious foods by a herbivorous insect[J]. Journal of Experimental Biology, 204: 3355-3367.
[22] Goslee S C, Peters D P C, Beck K G. 2001. Modeling invasive weeds in grasslands: the role of allelopathy in Acroptilon repens invasion[J]. Ecological Modeling, 139:31-45.
[23] Grant D W, Peters D P C, Beck G K, et al. 2003. Influence of an exotic species, Acroptilon repens (L.) DC. on seedling emergence and growth of native grasses[J]. Plant Ecology, 166:157-166.
[24] Gross E M, Meyer H, Schilling G. 1996. Release and ecological impact of algicidal hydrolysable polyphenols in Myriophyllum spicatum[J]. Phytochemistry, 41(1): 133-138.
[25] Halaweish F T, Kronberg S, Hubert M B, et al. 2002. Toxic and aversive diterpenes of Euphorbia esula[J]. Journal of Chemical Ecology, 28(8): 1599-1611.
[26] Haribal M, Renwick J A A. 2001. Seasonal and population variation in flavonoid and alliarinoside content of Alliaria petiolata[J]. Journal of Chemical Ecology, 27(8):1585-1594.
[27] Hierro J L, Callaway R M. 2003. Allelopathy and exotic plant invasion[J]. Plant and Soil, 256: 29-39.
[28] Jackson J R, Willemsen R W. 1976. Allelopathy in the first stage of secondary succession on the piedmont of New Jersey[J].American Journal of Botany, 63(7): 1015-1023.
[29] Jensen M N. 2000. Plant invader may use chemical weapons[J].Science, 290: 421-422.
[30] Keane R M, Crawley M J. 2002. Exotic plant invasions and the enemy release hypothesis[J]. Trends in Ecology and Evolution,17: 164-170.
[31] Kennedy T A, Naeem S, Howe K M, et al. 2002. Biodiversity as a barrier to ecological invasion[J]. Nature, 417: 636-638.
[32] Lankau R A, Rogers W E, Siemann E. 2004. Constraints on the utilisation of the invasive Chinese tallow tree Sapium sebiferum by generalist native herbivores in coastal prairies[J]. Ecological Entomology, 29: 66-75.
[33] Lawrence J G, Colwell A, Sexton O J. 1991. The ecological impact of allelopathy in Ailanthus altissima (Simaroubaceae)[J].American Journal of Botany, 78(7): 948-958.
[34] Lee C E. 2002. Evolutionary genetics of invasive species[J].Trends in Ecology and Evolution, 17(8): 386-391.
[35] Lodge D M. 1993. Biological invasions: lessons for ecology[J].Trends in Ecology and Evolution, 8: 133-137.
[36] Mack R N, Simberloff D, Lonsdale W M, et al. 2000. Biotic invasions: causes, epidemiology, global consequences, and control[J]. Ecological Application, 10:689-710.
[37] Mersie W, Singh M. 1987. Allelopathic effect of Lantana on some agronomic crops and weeds[J]. Plant and Soil, 98: 25-30.
[38] Mitchell C E, Power A G. 2003. Release of invasive plants from fungal and viral pathogens[J]. Nature, 421: 625-627.
[39] Nell R L, Rice E L. 1971. Possible role of Ambrosia psilostachya on pattern and succession in old-fields[J].American Midland Naturalist, 86(2): 344-358.
[40] Osbourne T C, Alexander D C, Sun S S M, et al. 1988.Insecticidal activity and lectin homology of arcelin seed protein[J]. Science, 240: 207-210.
[41] Pattison R R, Goldstein G, Ares A. 1998. Growth, biomass allocation, and photosynthesis of invasive and native Hawaiian rainforest species[J]. Oecologia, 117: 449-459.
[42] Pimentel D, Lach L, Zuniga R, et al. 2000. Environmental and economic costs of nonindigenous species in the United States[J].BioScience, 50: 53-65.
[43] Prati D, Bossdorf O. 2004. Allelopathic inhibition of germination by Alliaria petiolata (Brassicaceae)[J]. American Journal of Botany, 91(2): 285-288.
[44] Renwick J A A, Zhang W Q, Haribal M, et al. 2001. Dual chemical barriers protect a plant against different larval stages of an insect[J]. Journal of Chemical Ecology, 27(8): 1575-1583.
[45] Renwick J A A. 2002. The chemical world of Crucivores: lures,treats and traps [J]. Entomologia Experimentalis et Applicata,104: 35-42.
[46] Rice E L. 1984. Allelopathy (2 edition)[M]. New York:Academic Press. 1-3.
[47] Ridenour W M, Callaway R M. 2001. The relative importance of allelopathy in interference: the effects of an invasive weed on a native bunchgrass[J]. Oecologia, 126: 444-450.
[48] Robbins C T, Hanley T A, Hagerman A E, et al. 1987. Role of tannins in defending plants against ruminants: reduction in protein availability[J]. Ecology, 68: 98-107.
[49] Roberts J L, Olson B E. 1999. Effect of Euphorbia esula on sheep rumen microbial activity and mass in vitro[J]. Journal of Chemical Ecology, 25(2): 297-314.
[50] Sahid I B, Sagau J B. 1993. Allelopathic effect of Lantana (Lantana camara) and Siam weed (Chromolaena odorata) on selected crops[J]. Weed Science, 41: 303-308.
[51] Saxena M K. 2000. Aqueous Leachate of iantana camara kills water hyacinth[J]. Journal of Chemical Ecology, 26(10):2435-2447.
[52] Schroder H C, Badria F A, Ayyad S N, et al. 1998. Inhibitory effects of extracts from the marine alga Caulerpa taxifolia and of toxin from Caulerpa racemosa on multixenobiotic resistance in the marine sponge Geodia cydonium[J]. Environmental Toxicology and Pharmacology, 5:119-126.
[53] Siemens D H, Garner S H, Mitchell-Olds T, et al. 2002. Cost of defence in the context of plant competition: Brassica rapa may growth and defend[J]. Ecology, 83:505-517.
[54] Vitousek V M. 1992. Global environmental change: an introduc-tion[J]. Annual Review of Ecology and Systematics, 23:1-14.
[55] Vivanco J M, Bais H P, Stermitz F R, et al. 2004.Biogeographical variation in community response to root allelochemistry: novel weapons and exotic invasion[J].Ecological Letters, 7(4): 285-292.
[56] Weir T L, Bais H P, Vivanco J M. 2003. Intraspecific and interspecific interactions mediated by a phytotoxin, (-)-catechin,secreted by the roots of Centaurea maculosa (spotted knapweed)[J]. Journal of Chemical Ecology, 29(11):2397-2412.
[57] Williamson M, Fitter A. 1996. The varying success of invaders [J]. Ecology, 77(6): 1661 -1666.
[58] Wilson D S. 1997. Biological communities as functionally organized units[J]. Ecology, 78:2018-2024. |