|
|
Phylogenetic Affinities of Cercidiphyllaceae Based on mat K Sequences |
ZANG Qun1, NIE Xiang-ping1, SHI Su-hua2, HUANG Ye-lin2, TAN Feng-xiao2, ZHANG Hong-da2 |
1. College of life science and technology, Jinan University, Guangzhou 510632; 2. School of life sciences, Zhongshan University, Guangzhou 510275, China |
|
|
Abstract To further resolve the phylogenetic affinities of Cercidiphyllaceae,matK gene sequences generated for Tetracentraceae,Daphniphyllaceae,Cercidiphyllaceae and Liquidambar,Rhodoleia and Hamamelis of Hamamelidaceae,were analyzed using Neighbor-Joining method with Magnolia as an outgroup.The matK consensus tree displays similar topology to those of rbcL,atpB,and 18S rDNA sequences analyses respectively and combined with greater phylogenetic resolution.It shows that Cercidiphyllaceae,Daphniphylliaceae and Hamamelidaceae formed a robust clade,but relationships among them are not resolved;the phylogenetic relationships of Tetracentraceae to Cercidiphyllaceae are not so closed as traditional treatment.Thus,several lines of evidence,derived from both the chloroplast genome and 18S rDNA sequences,suggest the presence of considerably phylogenetic affinities between Cercidiphyllaceae,Daphniphyllaceae,and Hamamelidaceae,further information on some other quickly-evolved genes are needed to resolve phylogenetic relationships among them.The study corroborates the idea that matK sequences have potential in resolving phytogeny at family level.
|
Received: 25 April 2003
|
|
|
|
|
[1] Dahlgren R. 1980. A revised system of classification of the angiosperms[J]. Bot J Lin Soc, 80:91-124.
[2] Endress P K. 1986. Floral structure, systematics, and phylogeny in trochodendrales[J]. Ann Missouri Bot Gard, 73:297-324.
[3] Cronquist A. 1981. An integrated system of classification of flowering Plants[M]. New York:columbia University Press.
[4] APG. 1998. An ordinal classification for the families of flowering plants[J]. Ann. Missouri Bot. Gard, 84(4):531-553.
[5] Takhtajan A. 1996. Diversity and classification of flowering plants[M]. New York:Columbia University Press. 128-141.
[6] Tang Y. 1943. Systematic anatomy or the woods of the Hamamelidaceae[J]. Bull Fan Memorial inst. Biol., 1-63,Tables 1-3.
[7] Qiu Y L, Chase M W, Hoot S B. 1998. Phylogenetics of the Hamamelidae and their allies:parsimony analyses of nucleotide sequences of the plastid gene rbcL[J]. Int.J. Plant Sci, 159(6):1-13.
[8] Chase M W, Soltis D E, Olmstead R G, et al., 1993.Phylogentics of seed plants:an analysis of nucleotide sequences from the plastid gene rbcL[J]. Ann Mo Bot Gard,80:528-580.
[9] Soltis D E, Soltis P S, Nickrent D L, et al., 1997.Angiosperm phylogeny inferred from 18S ribosomal DNA sequences[J]. Ann. Missouri Bot. Gard., 84:1-49.
[10] Hoot S B, Magallon S, Crane P R, 1999. Phylogeny of basal eudicots based on three molecular data sets; atpB, rbcL, and 18S nuclear ribosomal DNA sequences[J]. Annals of the Missouri Botanical Garden, 86(1):1-32.
[11] Hilu K W, Liang H P. 1997. The matK gene:sequence variation and application in plant systematics[J]. American Journal of Botany, 84(6):830-839
[12] Sugita M, Shinozaki K, Sugiura M. 1985. Tobacco chloroplast tRNAlys(UUU) gene contains a 2.5-kilobasepair intron:an open reading frame and a conserved boundary sequence in the intron. Proc[J]. Natl. Acad. Sci. USA,82:3357-3561.
[13] Sutton D A. 1989. The Daphiphyllaes:a systematic review:in Crane P R, Blackmore S eds. Evolution, systematics, and fossil History of the Hamamelidae, volume 1:Introduction and "lower" hamamelidae, systematics Association Special Volume[M]. Oxford:Clarendon Press. No. 40A:285-291.
[14] Zhang Z Y, Lu A M. 1989. Phylogenetic relationship of Daphniphyllaceae[J]. Acta Phytotaxon sin, 27:17-26.
[15] Croizat L. 1941. On the systematic position of Daphniphyllum and its allies[J]. Ling Sci J, 20(1):79-104. |
[1] |
. [J]. Ecological Science, 2019, 38(1): 1-8. |
|
|
|
|