[1] 贾树海,韩志根,吕默楠,王晶,谢东祺. 基于决策树的辽宁省北部沙漠化信息提取研究[J]. 生态环境学报, 2011, 20(1):13-18.
[2] Defries R S, Hansen M C, Townshend J R G, Sohlberg R. Global land cover classifications at 8 km spatial resolution: The use of training data derived from landsat imagery in decision tree classifiers[J]. International Journal of Remote Sensing, 1998, 19(16): 3141-3168.
[3] Friedl M A, Strahler C E, Strabler A H. Maximizing land cover classification accuracies produced by decision trees at continental to global scales[J]. IEEE Transactions on Geoscience Remote Sensing, 1997, 37(2): 969-977.
[4] 毛克彪,覃志豪,李昕,李海涛. 空间数据挖掘与GIS集成及应用研究[J]. 测绘与空间地理信息, 2004, 1(27) :14-17.
[5] Friedl M A, Brodley C E. Decision tree classification of land cover from remotely sensed data[J]. Remote Sensing of Environment, 1997, 61:399-409.
[6] 刘勇洪,牛铮,王长耀. 基于MODIS数据的决策树分类方法研究与应用[J]. 遥感学报, 2005, 9(4):405-412.
[7] 吴见,彭道黎. 基于TM影像的多伦县土地利用信息提取[J]. 东北林业大学学报, 2010, 38(10):88-94.
[8] 黄添强,郭躬德,卓飞豹. 基于多分类器的复合决策树在遥感分类中的应用[J]. 青岛大学学报:工程技术版, 2007, 22(4):60-64.
[9] 张爽,刘雪华,靳强. 决策树学习方法应用于生境景观分类[J]. 清华大学学报:自然科学版, 2006, 46(9):1564-1567.
[10] 齐红超,祁元,徐瑱. 基于C5.0决策树算法的西北干旱区土地覆盖分类研究—以甘肃省武威市为例[J]. 遥感技术与应用, 2009, 24(5):648-653.
[11] 巩固,吕俊怀,黄永青,郝国生. 有效改进C5.0算法的方法[J]. 计算机工程与设计, 2009, 30(22):5197-5203.
[12] 朱梅红,石勇,李爱华,张东玲. 三种分类算法偏差-方差结构的比较:MCLP,LDA和C5.0[J]. 中国科学院研究生院学报, 2009, 26(4):443-450.
[13] Derek R P, Steven E F. Image texture processing and data integration for surface pattern discrimination[J]. Photogrammetric Engineering and Remote Sensing, 1991, 57(4):413-420.
[14] 游浩辰,许章华,刘健,余坤勇,张新珠. GIS支持下的山区遥感影像决策树分类研究[J]. 北京联合大学学报:自然科学版, 2011, 25(1):34-45.
[15] Quinlan J R. Induction of decision trees[J]. Machine Learning, 1986, 1:81-106.
[16] Quinlan J R. C4.5: Programs for Machine Learning[M]. San Mateo, CA: Morgan Kaufmann, 1993.
[17] Lewis F, Douglas F. Identifying Markov Blankets with Decision Tree Induction[C]. Proceedings of the Third IEEE International Conference on Data Mining(ICDM03), 2003. |