[1] Roselló-Mora R,Amann R.2001.The species concept for prokaryotes[J].FEMS Microbiology Reviews,25(1):39-67.
[2] Erb R W,Wagner-Dobler L.1993.Detection of polychlorinated biphenyl degradation genes in polluted sediments by direct DNA extraction and polymerase chain reaction[J].Applied and Environmental Microbiology,59(12):4065-4073.
[3] Langworthy T A.1985.Lipids of Archaebacteria[J].The Bacteria,8:459-497.
[4] White D C,Davis W M,Nickels J S,et al.1979.Determination of sedimentary microbial biomass by extractable lipid phosphate[J].Oecologia,40:51-62.
[5] Ringelberg D B,Davis J D,Smith G A,et al.1989.Validation of signature polarlipid fatty acid biomarkers for alkane-utilizing bacteria in soils and subsurface aquifer materials[J].FEMS Microbiology Ecology,62:39-50.
[6] Bligh E G,Dyer W J.1959.A rapid method of total lipid extraction and purification[J].Canadian Journal of Biochemistry Physiology,37:911-917.
[7] Frostegard A,Baath E.1996.The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil[J].Biology and Fertility of Soils,22:59-65.
[8] Fritze H,Pietikainen J,Pennanen T.2000.Distribution of microbial biomass and phospholipid fatty acids in podzol profiles under coniferous forest[J].European Journal of Soil Science,51:565-573.
[9] White D C,Stair J O,Ringelberg D B.1996.Quantitative comparisons of in situ microbial biodiversity by signature biomarker analysis[J].Journal of Industrial Microbiology,17:185-196.
[10] Zelles L.1997.Phospholipid fatty acid profiles in selected members of soil microbial communities[J].Chemosphere,35:275-294.
[11] Borga P,Nilsson M,Tunlid A.1994.Bacterial communities in peat in relat ion to botanical composition as revealed by phospholipid fatty-acid analysis[J].Soil Biology and Biochemistry,26:841-848.
[12] Steinberger Y,Zelles L,Bai Q Y,et al.1999.Phospholipid fatty acid profiles as indicators for the community structure in soils along a climatic transect in the Judean Desert[J].Biology and Fertility of Soils,28:292-300.
[13] Garland J L,Mills A L.1991.Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization[J].Applied and Environmental Microbiology,57:2351-2359.
[14] Fredrickson J K,Balkwill D L,Zachara J M,et al.1991.Physiological diversity and distributions of heterotrophic bacteria in deep Cretaceous sediments of the Atlantic coastal plain[J].Applied and Environmental Microbiology,7:402-411.
[15] Guckert J B,Carr G J,Johnson T D,et al.1996.Community analysis by Biolog:curve integration for statistical analysis of activated sludge microbial habitats[J].Journal of Microbiological Methods,27:183-197.
[16] Hollibaugh J T.1994.Relationship between thymidine metabolism,bacterioplankton community metabolic capabilities,and sources of organic matter.Microbial Ecology,28:117-131.
[17] O'Connell S P,Garland,J L.2002.Dissimilar response of microbial communities in Biolog GN and GN2 plates[J].Soil Biology and Biochemistry,34:413-416.
[18] Choi K H,Dobbs F C.1999.Comparison of two kinds of Biolog microplates(GN and ECO) in their ability to distinguish among aquatic microbial communities[J].Journal of Microbiological Methods,36:203-213.
[19] Garland J L,Lehman R M.1999.Dilution/extinction of community phenotypic characters to estimate relative structural diversity in mixed communities[J].FEMS Microbiology Ecology,30:333-343.
[20] Franklin R B,Garland J L,Bolster C H,et al.2001.Impact of dilution on microbial community structure and functional potential:comparison of numerical simulations and batch culture experiments[J].Applied and Environmental Microbiology,67:702-712.
[21] Herrick J B,Madsen E L,Batt C A,et al.1993.Polymerase chain reaction amplification of naphthalene-catabolic and16S rRNA gene sequences from indigenous sediment bacteria[J].Applied and Environmental Microbiology,59(3):687-694
[22] Torsvik V L.1980.solation of bacterial DNA from soil[J].Soil Biology and Biochemistry,12:15-21.
[23] Torsivk v,Goksoyr J,Daae F L.1990.High diversity of DNA of soil bacreia[J].Applied and Environmental Microbiology,56:782-787.
[24] Torsivkv,Salte K,sorheim R,et al.1990.Comparison of phenotypic diversity and heterogeneity in a population of soil bacteria[J].Applied and Environmental Microbiology,56:776-781.
[25] Goodfellow M,O'Donnell A G.1993.Roots of bacterial systematics.In:Goodfellow,M.,O'Donnell,A.G.(Eds.),Handbook of New Bacterial Systematics.Academic Press Inc.,San Diego.pp.3-56.
[26] Vandamme P,Pot B,Gillis M,et al.1996.Polyphasic taxonomy,a concensus approach to bacterial systematics[J].Microbiological Review,60:407-438.
[27] Santo Domingo J W,Kaufman M G,Klug M J,et al.1998.Influence of diet on the structure and function of the bacterial hindgut community of crickets[J].Molecular Ecology,7:761-767.
[28] Woese C R.1987.Bacterial evolution[J].Microbiological Review,51:21-271.
[29] Olsen G J,Woese C R,Overbeek R.1994.The winds of(evolutionary) change:breathing new life into microbiology[J].Journal of Bacteriology,176:1-6.
[30] Muyzer G A,de Waal E C,Uitterlinden A G.1993.Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reactionamplified genes coding for 16S rRNA[J].Applied and Environmental Microbiology,59:695-700.
[31] Lee D H,Zo Y G,Kim S J.1996.Nonradioactive method to study genetic profiles of natural bacterial communities by PCR-single-strand-conformation polymorphism[J].Applied and Environmental Microbiology,62:3112-3120.
[32] Smit E,Leeflang P,Wernars K.1997.Detection of shifts in microbial community structure and diversity in soil caused by copper contamination using amplified ribosomal DNA restriction analysis[J].FEMS Microbiology Ecology,23:249-261.
[33] Widmer F,Seidler R J,Watrud L S.1996.Sensitive detection of transgenic plant marker gene persistence in soil microcosms[J].Molecular Ecology,5:603-613. |